Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.descriptive.univariate
This module contains algorithms for univariate descriptive statistics.
Note that used specialized summing algorithms execute more primitive operations
than vanilla summation. Therefore, if in certain cases maximum speed is required
at expense of precision, one can use Summation.fast .
Category | Symbols |
---|---|
Location | gmean hmean mean median |
Deviation | dispersion entropy interquartileRange medianAbsoluteDeviation quantile standardDeviation variance |
Higher Moments, etc. | kurtosis skewness |
Other Moment Functions | centralMoment coefficientOfVariation moment rawMoment standardizedMoment |
Accumulators | EntropyAccumulator GMeanAccumulator KurtosisAccumulator MeanAccumulator MomentAccumulator SkewnessAccumulator VarianceAccumulator |
Algorithms | KurtosisAlgo MomentAlgo QuantileAlgo SkewnessAlgo StandardizedMomentAlgo VarianceAlgo |
Types | entropyType gmeanType hmeanType meanType quantileType statType stdevType |
License:
Apache-2.0
Several functions are borrowed from
mir.math.stat. An additional
VarianceAlgo is provided in this code, which is the new default.
Authors:
John Michael Hall, Ilya Yaroshenko
- public import mir.math.sum :
Summation
; - template
statType
(T, bool checkComplex = true) - template
meanType
(T) - struct
MeanAccumulator
(T, Summation summation); - Output range for mean.Examples:
import mir.ndslice.slice: sliced; MeanAccumulator!(double, Summation.pairwise) x; x.put([0.0, 1, 2, 3, 4].sliced); assert(x.mean == 2); x.put(5); assert(x.mean == 2.5);
- size_t
count
; - Summator!(T, summation)
summator
; - const pure nothrow @nogc @property @safe F
mean
(F = T)(); - const pure nothrow @nogc @property @safe F
sum
(F = T)(); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(F = T)(MeanAccumulator!(F, summation)m
);
- template
mean
(F, Summation summation = Summation.appropriate)
templatemean
(Summation summation = Summation.appropriate)
templatemean
(F, string summation)
templatemean
(string summation) - Computes the mean of the input.By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.Parameters:
F controls type of output summation algorithm for calculating sums (default: Summation.appropriate) Returns:The mean of all the elements in the input, must be floating point or complex typeSee Also:Examples:import mir.ndslice.slice: sliced; import mir.complex; alias C = Complex!double; assert(mean([1.0, 2, 3]) == 2); assert(mean([C(1, 3), C(2), C(3)]) == C(2, 1)); assert(mean!float([0, 1, 2, 3, 4, 5].sliced(3, 2)) == 2.5); static assert(is(typeof(mean!float([1, 2, 3])) == float));
Examples:Mean of vectorimport mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.mean == 29.25 / 12);
Examples:Mean of matriximport mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.mean == 29.25 / 12);
Examples:Column mean of matriximport mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; import mir.algorithm.iteration: all; import mir.math.common: approxEqual; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [1, 4.25, 3.25, 1.5, 2.5, 2.125]; // Use byDim or alongDim with map to compute mean of row/column. assert(x.byDim!1.map!mean.all!approxEqual(result)); assert(x.alongDim!0.map!mean.all!approxEqual(result)); // FIXME // Without using map, computes the mean of the whole slice // assert(x.byDim!1.mean == x.sliced.mean); // assert(x.alongDim!0.mean == x.sliced.mean);
Examples:Can also set algorithm or output typeimport mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; //Set sum algorithm or output type auto a = [1, 1e100, 1, -1e100].sliced; auto x = a * 10_000; assert(x.mean!"kbn" == 20_000 / 4); assert(x.mean!"kb2" == 20_000 / 4); assert(x.mean!"precise" == 20_000 / 4); assert(x.mean!(double, "precise") == 20_000.0 / 4); auto y = uint.max.repeat(3); assert(y.mean!ulong == 12884901885 / 3);
Examples:For integral slices, pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.mean; assert(y.approxEqual(29.0 / 12, 1.0e-10)); static assert(is(typeof(y) == double)); assert(x.mean!float.approxEqual(29f / 12, 1.0e-10));
Examples:Mean works for complex numbers and other user-defined types (provided they can be converted to a floating point or complex type)import mir.complex.math: approxEqual; import mir.ndslice.slice: sliced; import mir.complex; alias C = Complex!double; auto x = [C(1.0, 2), C(2, 3), C(3, 4), C(4, 5)].sliced; assert(x.mean.approxEqual(C(2.5, 3.5)));
Examples:Compute mean tensors along specified dimention of tensorsimport mir.ndslice: alongDim, iota, as, map; /++ [[0,1,2], [3,4,5]] +/ auto x = iota(2, 3).as!double; assert(x.mean == (5.0 / 2.0)); auto m0 = [(0.0+3.0)/2.0, (1.0+4.0)/2.0, (2.0+5.0)/2.0]; assert(x.alongDim!0.map!mean == m0); assert(x.alongDim!(-2).map!mean == m0); auto m1 = [(0.0+1.0+2.0)/3.0, (3.0+4.0+5.0)/3.0]; assert(x.alongDim!1.map!mean == m1); assert(x.alongDim!(-1).map!mean == m1); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!mean == iota([3, 4, 5], 3 * 4 * 5 / 2));
Examples:Arbitrary meanassert(mean(1.0, 2, 3) == 2); assert(mean!float(1, 2, 3) == 2);
- meanType!F
mean
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable - meanType!F
mean
(scope const F[]ar
...); - Parameters:
F[] ar
values
- template
hmeanType
(T) - template
hmean
(F, Summation summation = Summation.appropriate)
templatehmean
(Summation summation = Summation.appropriate)
templatehmean
(F, string summation)
templatehmean
(string summation) - Computes the harmonic mean of the input.By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.Parameters:
F controls type of output summation algorithm for calculating sums (default: Summation.appropriate) Returns:harmonic mean of all the elements of the input, must be floating point or complex typeSee Also:Examples:Harmonic mean of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [20.0, 100.0, 2000.0, 10.0, 5.0, 2.0].sliced; assert(x.hmean.approxEqual(6.97269));
Examples:Harmonic mean of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [20.0, 100.0, 2000.0], [10.0, 5.0, 2.0] ].fuse; assert(x.hmean.approxEqual(6.97269));
Examples:Column harmonic mean of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [20.0, 100.0, 2000.0], [ 10.0, 5.0, 2.0] ].fuse; auto y = [13.33333, 9.52381, 3.996004]; // Use byDim or alongDim with map to compute mean of row/column. assert(x.byDim!1.map!hmean.all!approxEqual(y)); assert(x.alongDim!0.map!hmean.all!approxEqual(y));
Examples:Can also pass arguments to hmeanimport mir.math.common: approxEqual; import mir.ndslice.topology: repeat; import mir.ndslice.slice: sliced; //Set sum algorithm or output type auto x = [1, 1e-100, 1, -1e-100].sliced; assert(x.hmean!"kb2".approxEqual(2)); assert(x.hmean!"precise".approxEqual(2)); assert(x.hmean!(double, "precise").approxEqual(2)); //Provide the summation type assert(float.max.repeat(3).hmean!double.approxEqual(float.max));
Examples:For integral slices, pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [20, 100, 2000, 10, 5, 2].sliced; auto y = x.hmean; assert(y.approxEqual(6.97269)); static assert(is(typeof(y) == double)); assert(x.hmean!float.approxEqual(6.97269));
Examples:hmean works for complex numbers and other user-defined types (provided they can be converted to a floating point or complex type)import mir.complex.math: approxEqual; import mir.ndslice.slice: sliced; import mir.complex; alias C = Complex!double; auto x = [C(1, 2), C(2, 3), C(3, 4), C(4, 5)].sliced; assert(x.hmean.approxEqual(C(1.97110904, 3.14849332)));
Examples:Arbitrary harmonic meanimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = hmean(20.0, 100, 2000, 10, 5, 2); assert(x.approxEqual(6.97269)); auto y = hmean!float(20, 100, 2000, 10, 5, 2); assert(y.approxEqual(6.97269));
- hmeanType!F
hmean
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range - hmeanType!F
hmean
(scope const F[]ar
...); - Parameters:
F[] ar
values
- struct
GMeanAccumulator
(T) if (isMutable!T && isFloatingPoint!T); - Output range for gmean.Examples:
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; GMeanAccumulator!double x; x.put([1.0, 2, 3, 4].sliced); assert(x.gmean.approxEqual(2.21336384)); x.put(5); assert(x.gmean.approxEqual(2.60517108));
- size_t
count
; - ProdAccumulator!T
prodAccumulator
; - const @property F
gmean
(F = T)()
if (isFloatingPoint!F); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
);
- template
gmeanType
(T) - gmeanType!F
gmean
(F, Range)(Ranger
)
if (isFloatingPoint!F && isIterable!Range);
gmeanType!Rangegmean
(Range)(Ranger
)
if (isIterable!Range); - Computes the geometric average of the input.By default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
Range r
range, must be finite iterable Returns:The geometric average of all the elements in the input, must be floating point typeSee Also: - gmeanType!F
gmean
(F)(scope const F[]ar
...)
if (isFloatingPoint!F); - Parameters:
F[] ar
values Examples:import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; assert(gmean([1.0, 2, 3]).approxEqual(1.81712059)); assert(gmean!float([1, 2, 3, 4, 5, 6].sliced(3, 2)).approxEqual(2.99379516)); static assert(is(typeof(gmean!float([1, 2, 3])) == float));
Examples:Geometric mean of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 2.0].sliced; assert(x.gmean.approxEqual(2.36178395));
Examples:Geometric mean of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [3.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 2.0] ].fuse; assert(x.gmean.approxEqual(2.36178395));
Examples:Column gmean of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [3.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 2.0] ].fuse; auto result = [2.44948974, 2.73861278, 2.73861278, 1.41421356, 2.29128784, 2.91547594]; // Use byDim or alongDim with map to compute mean of row/column. assert(x.byDim!1.map!gmean.all!approxEqual(result)); assert(x.alongDim!0.map!gmean.all!approxEqual(result)); // FIXME // Without using map, computes the mean of the whole slice // assert(x.byDim!1.gmean.all!approxEqual(result)); // assert(x.alongDim!0.gmean.all!approxEqual(result));
Examples:Can also set output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; auto x = [5120.0, 7340032, 32, 3758096384].sliced; assert(x.gmean!float.approxEqual(259281.45295212)); auto y = uint.max.repeat(2); assert(y.gmean!float.approxEqual(cast(float) uint.max));
Examples:For integral slices, pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [5, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 10].sliced; auto y = x.gmean; static assert(is(typeof(y) == double)); assert(x.gmean!float.approxEqual(2.79160522));
Examples:gean works for user-defined types, provided the nth root can be taken for themstatic struct Foo { float x; alias x this; } import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [Foo(1.0), Foo(2.0), Foo(3.0)].sliced; assert(x.gmean.approxEqual(1.81712059));
Examples:Compute gmean tensors along specified dimention of tensorsimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, iota, map; auto x = [ [1.0, 2, 3], [4.0, 5, 6] ].fuse; assert(x.gmean.approxEqual(2.99379516)); auto result0 = [2.0, 3.16227766, 4.24264069]; assert(x.alongDim!0.map!gmean.all!approxEqual(result0)); assert(x.alongDim!(-2).map!gmean.all!approxEqual(result0)); auto result1 = [1.81712059, 4.93242414]; assert(x.alongDim!1.map!gmean.all!approxEqual(result1)); assert(x.alongDim!(-1).map!gmean.all!approxEqual(result1)); auto y = [ [ [1.0, 2, 3], [4.0, 5, 6] ], [ [7.0, 8, 9], [10.0, 9, 10] ] ].fuse; auto result3 = [ [2.64575131, 4.0, 5.19615242], [6.32455532, 6.70820393, 7.74596669] ]; assert(y.alongDim!0.map!gmean.all!approxEqual(result3));
Examples:Arbitrary gmeanimport mir.math.common: approxEqual; assert(gmean(1.0, 2, 3).approxEqual(1.81712059)); assert(gmean!float(1, 2, 3).approxEqual(1.81712059));
- template
median
(F, bool allowModify = false)
templatemedian
(bool allowModify = false) - Computes the median of slice.By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true. Can also pass a boolean variable, allowModify, that allows the input slice to be modified. By default, a reference-counted copy is made.Parameters:
F output type allowModify Allows the input slice to be modified, default is false Returns:the median of the sliceSee Also:- @nogc meanType!F
median
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
); - Parameters:
Slice!(Iterator, N, kind) slice
slice
- meanType!(T[])
median
(T)(scope const T[]ar
...); - Parameters:
T[] ar
array - auto
median
(T)(TsliceLike
)
if (isConvertibleToSlice!T && !isSlice!T); - Parameters:
T sliceLike
type that satisfies isConvertibleToSlice!T && !isSlice!T Examples:Median of vectorimport mir.ndslice.slice: sliced; auto x0 = [9.0, 1, 0, 2, 3, 4, 6, 8, 7, 10, 5].sliced; assert(x0.median == 5); auto x1 = [9.0, 1, 0, 2, 3, 4, 6, 8, 7, 10].sliced; assert(x1.median == 5);
Examples:Median of dynamic arrayauto x0 = [9.0, 1, 0, 2, 3, 4, 6, 8, 7, 10, 5]; assert(x0.median == 5); auto x1 = [9.0, 1, 0, 2, 3, 4, 6, 8, 7, 10]; assert(x1.median == 5);
Examples:Median of matriximport mir.ndslice.fuse: fuse; auto x0 = [ [9.0, 1, 0, 2, 3], [4.0, 6, 8, 7, 10] ].fuse; assert(x0.median == 5);
Examples:Row median of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.slice: sliced; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [1.75, 1.75].sliced; // Use byDim or alongDim with map to compute median of row/column. assert(x.byDim!0.map!median.all!approxEqual(result)); assert(x.alongDim!1.map!median.all!approxEqual(result));
Examples:Can allow original slice to be modified or set output typeimport mir.ndslice.slice: sliced; auto x0 = [9.0, 1, 0, 2, 3, 4, 6, 8, 7, 10, 5].sliced; assert(x0.median!true == 5); auto x1 = [9, 1, 0, 2, 3, 4, 6, 8, 7, 10].sliced; assert(x1.median!(float, true) == 5);
Examples:Arbitrary medianassert(median(0, 1, 2, 3, 4) == 2);
Examples:For integral slices, can pass output type as template parameter to ensure output type is correctimport mir.ndslice.slice: sliced; auto x = [9, 1, 0, 2, 3, 4, 6, 8, 7, 10].sliced; assert(x.median!float == 5f); auto y = x.median; assert(y == 5.0); static assert(is(typeof(y) == double));
- struct
MapSummator
(alias fun, T, Summation summation) if (isMutable!T); - Output range that applies function fun to each input before summingExamples:
import mir.math.common: powi; import mir.ndslice.slice: sliced; alias f = (double x) => (powi(x, 2)); MapSummator!(f, double, Summation.pairwise) x; x.put([0.0, 1, 2, 3, 4].sliced); assert(x.sum == 30.0); x.put(5); assert(x.sum == 55.0);
- Summator!(T, summation)
summator
; - const @property F
sum
(F = T)(); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
);
- enum
VarianceAlgo
: int; - Variance algorithms.See Also: Algorithms for calculating variance.
online
- Performs Welford's online algorithm for updating variance. Can also put another VarianceAccumulator of different types, which uses the parallel algorithm from Chan et al., described above.
naive
- Calculates variance using E(x^^2) - E(x)^2 (alowing for adjustments for population/sample variance). This algorithm can be numerically unstable. As in: E(x ^^ 2) - E(x) ^^ 2
twoPass
- Calculates variance using a two-pass algorithm whereby the input is first centered and then the sum of squares is calculated from that. As in: E((x - E(x)) ^^ 2)
assumeZeroMean
- Calculates variance assuming the mean of the dataseries is zero.
hybrid
- When slices, slice-like objects, or ranges are the inputs, uses the two-pass algorithm. When an individual data-point is added, uses the online algorithm.
- struct
VarianceAccumulator
(T, VarianceAlgo varianceAlgo, Summation summation) if (isMutable!T && (varianceAlgo == VarianceAlgo.naive)); - Examples:naive
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; VarianceAccumulator!(double, VarianceAlgo.naive, Summation.naive) v; v.put(x); assert(v.variance(true).approxEqual(54.76562 / 12)); assert(v.variance(false).approxEqual(54.76562 / 11)); v.put(4.0); assert(v.variance(true).approxEqual(57.01923 / 13)); assert(v.variance(false).approxEqual(57.01923 / 12));
- this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, Summation sumAlgo)(VarianceAccumulator!(U, varianceAlgo, sumAlgo)v
); - @property size_t
count
(); - const @property F
mean
(F = T)(); - F
sumOfSquares
(F = T)(); - F
centeredSumOfSquares
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
);
- struct
VarianceAccumulator
(T, VarianceAlgo varianceAlgo, Summation summation) if (isMutable!T && (varianceAlgo == VarianceAlgo.online)); - Examples:online
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; VarianceAccumulator!(double, VarianceAlgo.online, Summation.naive) v; v.put(x); assert(v.variance(true).approxEqual(54.76562 / 12)); assert(v.variance(false).approxEqual(54.76562 / 11)); v.put(4.0); assert(v.variance(true).approxEqual(57.01923 / 13)); assert(v.variance(false).approxEqual(57.01923 / 12));
- this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, VarianceAlgo varAlgo, Summation sumAlgo)(VarianceAccumulator!(U, varAlgo, sumAlgo)v
)
if (varAlgo != VarianceAlgo.assumeZeroMean); - @property size_t
count
(); - const @property F
mean
(F = T)(); - F
centeredSumOfSquares
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
);
- struct
VarianceAccumulator
(T, VarianceAlgo varianceAlgo, Summation summation) if (isMutable!T && (varianceAlgo == VarianceAlgo.twoPass)); - Examples:twoPass
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = VarianceAccumulator!(double, VarianceAlgo.twoPass, Summation.naive)(x); assert(v.variance(true).approxEqual(54.76562 / 12)); assert(v.variance(false).approxEqual(54.76562 / 11));
- this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isInputRange!Range && !isConvertibleToSlice!Range && is(elementType!Range : T)); - @property size_t
count
(); - const @property F
mean
(F = T)(); - const @property F
centeredSumOfSquares
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
);
- struct
VarianceAccumulator
(T, VarianceAlgo varianceAlgo, Summation summation) if (isMutable!T && (varianceAlgo == VarianceAlgo.assumeZeroMean)); - Examples:assumeZeroMean
import mir.math.common: approxEqual; import mir.stat.transform: center; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a.center; VarianceAccumulator!(double, VarianceAlgo.assumeZeroMean, Summation.naive) v; v.put(x); assert(v.variance(true).approxEqual(54.76562 / 12)); assert(v.variance(false).approxEqual(54.76562 / 11)); v.put(4.0); assert(v.variance(true).approxEqual(70.76562 / 13)); assert(v.variance(false).approxEqual(70.76562 / 12));
- this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, Summation sumAlgo)(VarianceAccumulator!(U, varianceAlgo, sumAlgo)v
); - @property size_t
count
(); - const @property F
mean
(F = T)(); - MeanAccumulator!(T, summation)
meanAccumulator
()(); - const @property F
centeredSumOfSquares
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
);
- struct
VarianceAccumulator
(T, VarianceAlgo varianceAlgo, Summation summation) if (isMutable!T && (varianceAlgo == VarianceAlgo.hybrid)); - Examples:online
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = VarianceAccumulator!(double, VarianceAlgo.hybrid, Summation.naive)(x); assert(v.variance(true).approxEqual(54.76562 / 12)); assert(v.variance(false).approxEqual(54.76562 / 11)); v.put(4.0); assert(v.variance(true).approxEqual(57.01923 / 13)); assert(v.variance(false).approxEqual(57.01923 / 12));
- this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isIterable!Range && !isConvertibleToSlice!Range); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, VarianceAlgo varAlgo, Summation sumAlgo)(VarianceAccumulator!(U, varAlgo, sumAlgo)v
)
if (varAlgo != VarianceAlgo.assumeZeroMean); - @property size_t
count
(); - const @property F
mean
(F = T)(); - F
centeredSumOfSquares
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
);
- template
variance
(F, VarianceAlgo varianceAlgo = VarianceAlgo.hybrid, Summation summation = Summation.appropriate)
templatevariance
(VarianceAlgo varianceAlgo = VarianceAlgo.hybrid, Summation summation = Summation.appropriate)
templatevariance
(F, string varianceAlgo, string summation = "appropriate")
templatevariance
(string varianceAlgo, string summation = "appropriate") - Calculates the variance of the inputBy default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.Parameters:
F controls type of output varianceAlgo algorithm for calculating variance (default: VarianceAlgo.hybrid) summation algorithm for calculating sums (default: Summation.appropriate) Returns:The variance of the input, must be floating point or complex typeExamples:import mir.math.common: approxEqual; import mir.complex.math: capproxEqual = approxEqual; import mir.ndslice.slice: sliced; import mir.complex; alias C = Complex!double; assert(variance([1.0, 2, 3]).approxEqual(2.0 / 2)); assert(variance([1.0, 2, 3], true).approxEqual(2.0 / 3)); assert(variance([C(1, 3), C(2), C(3)]).capproxEqual(C(-4, -6) / 2)); assert(variance!float([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(17.5 / 5)); static assert(is(typeof(variance!float([1, 2, 3])) == float));
Examples:Variance of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.variance.approxEqual(54.76562 / 11));
Examples:Variance of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.variance.approxEqual(54.76562 / 11));
Examples:Column variance of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [0.0, 1.0, 1.5, 2.0], [3.5, 4.25, 2.0, 7.5], [5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [13.16667 / 2, 7.041667 / 2, 0.1666667 / 2, 30.16667 / 2]; // Use byDim or alongDim with map to compute variance of row/column. assert(x.byDim!1.map!variance.all!approxEqual(result)); assert(x.alongDim!0.map!variance.all!approxEqual(result)); // FIXME // Without using map, computes the variance of the whole slice // assert(x.byDim!1.variance == x.sliced.variance); // assert(x.alongDim!0.variance == x.sliced.variance);
Examples:Can also set algorithm typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a + 1_000_000_000; auto y = x.variance; assert(y.approxEqual(54.76562 / 11)); // The naive algorithm is numerically unstable in this case auto z0 = x.variance!"naive"; assert(!z0.approxEqual(y)); auto z1 = x.variance!"online"; assert(z1.approxEqual(54.76562 / 11)); // But the two-pass algorithm provides a consistent answer auto z2 = x.variance!"twoPass"; assert(z2.approxEqual(y)); // And the assumeZeroMean algorithm is way off auto z3 = x.variance!"assumeZeroMean"; assert(z3.approxEqual(1.2e19 / 11));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; //Set population variance, variance algorithm, sum algorithm or output type auto a = [1.0, 1e100, 1, -1e100].sliced; auto x = a * 10_000; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.variance(false).approxEqual(2.0e208 / 3)); assert(x.variance(true).approxEqual(2.0e208 / 4)); assert(x.variance!("online").approxEqual(2.0e208 / 3)); assert(x.variance!("online", "kbn").approxEqual(2.0e208 / 3)); assert(x.variance!("online", "kb2").approxEqual(2.0e208 / 3)); assert(x.variance!("online", "precise").approxEqual(2.0e208 / 3)); assert(x.variance!(double, "online", "precise").approxEqual(2.0e208 / 3)); assert(x.variance!(double, "online", "precise")(true).approxEqual(2.0e208 / 4)); auto y = uint.max.repeat(3); auto z = y.variance!ulong; assert(z == 0.0); static assert(is(typeof(z) == double));
Examples:For integral slices, pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.variance; assert(y.approxEqual(50.91667 / 11)); static assert(is(typeof(y) == double)); assert(x.variance!float.approxEqual(50.91667 / 11));
Examples:Variance works for complex numbers and other user-defined types (provided they can be converted to a floating point or complex type)import mir.complex.math: approxEqual; import mir.ndslice.slice: sliced; import mir.complex; alias C = Complex!double; auto x = [C(1, 2), C(2, 3), C(3, 4), C(4, 5)].sliced; assert(x.variance.approxEqual((C(0, 10)) / 3));
Examples:Compute variance along specified dimention of tensorsimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: as, iota, alongDim, map, repeat; auto x = [ [0.0, 1, 2], [3.0, 4, 5] ].fuse; assert(x.variance.approxEqual(17.5 / 5)); auto m0 = [4.5, 4.5, 4.5]; assert(x.alongDim!0.map!variance.all!approxEqual(m0)); assert(x.alongDim!(-2).map!variance.all!approxEqual(m0)); auto m1 = [1.0, 1.0]; assert(x.alongDim!1.map!variance.all!approxEqual(m1)); assert(x.alongDim!(-1).map!variance.all!approxEqual(m1)); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!variance.all!approxEqual(repeat(3600.0 / 2, 3, 4, 5)));
Examples:Arbitrary varianceassert(variance(1.0, 2, 3) == 1.0); assert(variance!float(1, 2, 3) == 1f);
- meanType!F
variance
(Range)(Ranger
, boolisPopulation
= false)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable bool isPopulation
true if population variance, false if sample variance (default) - meanType!F
variance
(scope const F[]ar
...); - Parameters:
F[] ar
values
- template
stdevType
(T) - template
standardDeviation
(F, VarianceAlgo varianceAlgo = VarianceAlgo.hybrid, Summation summation = Summation.appropriate)
templatestandardDeviation
(VarianceAlgo varianceAlgo = VarianceAlgo.hybrid, Summation summation = Summation.appropriate)
templatestandardDeviation
(F, string varianceAlgo, string summation = "appropriate")
templatestandardDeviation
(string varianceAlgo, string summation = "appropriate") - Calculates the standard deviation of the inputBy default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
F controls type of output varianceAlgo algorithm for calculating variance (default: VarianceAlgo.hybrid) summation algorithm for calculating sums (default: Summation.appropriate) Returns:The standard deviation of the input, must be floating point type typeExamples:import mir.math.common: approxEqual, sqrt; import mir.ndslice.slice: sliced; assert(standardDeviation([1.0, 2, 3]).approxEqual(sqrt(2.0 / 2))); assert(standardDeviation([1.0, 2, 3], true).approxEqual(sqrt(2.0 / 3))); assert(standardDeviation!float([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(sqrt(17.5 / 5))); static assert(is(typeof(standardDeviation!float([1, 2, 3])) == float));
Examples:Standard deviation of vectorimport mir.math.common: approxEqual, sqrt; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.standardDeviation.approxEqual(sqrt(54.76562 / 11)));
Examples:Standard deviation of matriximport mir.math.common: approxEqual, sqrt; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.standardDeviation.approxEqual(sqrt(54.76562 / 11)));
Examples:Column standard deviation of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual, sqrt; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [0.0, 1.0, 1.5, 2.0], [3.5, 4.25, 2.0, 7.5], [5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [13.16667 / 2, 7.041667 / 2, 0.1666667 / 2, 30.16667 / 2].map!sqrt; // Use byDim or alongDim with map to compute standardDeviation of row/column. assert(x.byDim!1.map!standardDeviation.all!approxEqual(result)); assert(x.alongDim!0.map!standardDeviation.all!approxEqual(result)); // FIXME // Without using map, computes the standardDeviation of the whole slice // assert(x.byDim!1.standardDeviation == x.sliced.standardDeviation); // assert(x.alongDim!0.standardDeviation == x.sliced.standardDeviation);
Examples:Can also set algorithm typeimport mir.math.common: approxEqual, sqrt; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a + 1_000_000_000; auto y = x.standardDeviation; assert(y.approxEqual(sqrt(54.76562 / 11))); // The naive algorithm is numerically unstable in this case auto z0 = x.standardDeviation!"naive"; assert(!z0.approxEqual(y)); // But the two-pass algorithm provides a consistent answer auto z1 = x.standardDeviation!"twoPass"; assert(z1.approxEqual(y));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual, sqrt; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; //Set population standard deviation, standardDeviation algorithm, sum algorithm or output type auto a = [1.0, 1e100, 1, -1e100].sliced; auto x = a * 10_000; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.standardDeviation(false).approxEqual(sqrt(2.0e208 / 3))); assert(x.standardDeviation(true).approxEqual(sqrt(2.0e208 / 4))); assert(x.standardDeviation!("online").approxEqual(sqrt(2.0e208 / 3))); assert(x.standardDeviation!("online", "kbn").approxEqual(sqrt(2.0e208 / 3))); assert(x.standardDeviation!("online", "kb2").approxEqual(sqrt(2.0e208 / 3))); assert(x.standardDeviation!("online", "precise").approxEqual(sqrt(2.0e208 / 3))); assert(x.standardDeviation!(double, "online", "precise").approxEqual(sqrt(2.0e208 / 3))); assert(x.standardDeviation!(double, "online", "precise")(true).approxEqual(sqrt(2.0e208 / 4))); auto y = uint.max.repeat(3); auto z = y.standardDeviation!ulong; assert(z == 0.0); static assert(is(typeof(z) == double));
Examples:For integral slices, pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual, sqrt; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.standardDeviation; assert(y.approxEqual(sqrt(50.91667 / 11))); static assert(is(typeof(y) == double)); assert(x.standardDeviation!float.approxEqual(sqrt(50.91667 / 11)));
Examples:Variance works for other user-defined types (provided they can be converted to a floating point)import mir.ndslice.slice: sliced; static struct Foo { float x; alias x this; } Foo[] foo = [Foo(1f), Foo(2f), Foo(3f)]; assert(foo.standardDeviation == 1f);
Examples:Compute standard deviation along specified dimention of tensorsimport mir.algorithm.iteration: all; import mir.math.common: approxEqual, sqrt; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: as, iota, alongDim, map, repeat; auto x = [ [0.0, 1, 2], [3.0, 4, 5] ].fuse; assert(x.standardDeviation.approxEqual(sqrt(17.5 / 5))); auto m0 = repeat(sqrt(4.5), 3); assert(x.alongDim!0.map!standardDeviation.all!approxEqual(m0)); assert(x.alongDim!(-2).map!standardDeviation.all!approxEqual(m0)); auto m1 = [1.0, 1.0]; assert(x.alongDim!1.map!standardDeviation.all!approxEqual(m1)); assert(x.alongDim!(-1).map!standardDeviation.all!approxEqual(m1)); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!standardDeviation.all!approxEqual(repeat(sqrt(3600.0 / 2), 3, 4, 5)));
Examples:Arbitrary standard deviationimport mir.math.common: sqrt; assert(standardDeviation(1.0, 2, 3) == 1.0); assert(standardDeviation!float(1, 2, 3) == 1f);
- stdevType!F
standardDeviation
(Range)(Ranger
, boolisPopulation
= false)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable bool isPopulation
true if population standard deviation, false if sample standard deviation (default) - stdevType!F
standardDeviation
(scope const F[]ar
...); - Parameters:
F[] ar
values
- enum
QuantileAlgo
: int; - Algorithms used to calculate the quantile of an input x at probability p.These algorithms match the same provided in R's (as of version 3.6.2) quantile function. In turn, these were discussed in Hyndman and Fan (1996). All sample quantiles are defined as weighted averages of consecutive order statistics. For each quantileAlgo, the sample quantile is given by (using R's 1-based indexing notation): (1 - gamma) * xj + gamma * xj + 1 where xj is the jth order statistic. gamma is a function of j = floor(np + m) and g = np + m - j where n is the sample size, p is the probability, and m is a constant determined by the quantile type.
Type m gamma Discontinuous sample quantile type1 0 0 if g = 0 and 1 otherwise. type2 0 0.5 if g = 0 and 1 otherwise. type3 -0.5 0 if g = 0 and j is even and 1 otherwise. Continuous sample quantile type4 0 gamma = g type5 0.5 gamma = g type6 p gamma = g type7 1 - p gamma = g type8 (p + 1) / 3 gamma = g type9 p / 4 + 3 / 8 gamma = g References Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American Statistician 50, 361--365. 10.2307/2684934.
See Also:type1
Discontinuous sample quantile
Inverse of empirical distribution function.type2
- Similar to type1, but averages at discontinuities.
type3
- SAS definition: nearest even order statistic.
type4
Continuous sample quantile
Linear interpolation of the empirical cdf.type5
- A piece-wise linear function hwere the knots are the values midway through the steps of the empirical cdf. Popular amongst hydrologists.
type6
- Used by Minitab and by SPSS.
type7
- This is used by S and is the default for R.
type8
- The resulting quantile estimates are approximately median-unbiased regardless of the distribution of the input. Preferred by Hyndman and Fan (1996).
type9
- The resulting quantile estimates are approximately unbiased for the expected order statistics of the input is normally distributed.
- template
quantileType
(T, QuantileAlgo quantileAlgo) - For all QuantileAlgo except QuantileAlgo.type1 and QuantileAlgo.type3, this is an alias to the meanType of T
- template
quantile
(F, QuantileAlgo quantileAlgo = QuantileAlgo.type7, bool allowModifySlice = false, bool allowModifyProbability = false) if (isFloatingPoint!F || (quantileAlgo == QuantileAlgo.type1 || quantileAlgo == QuantileAlgo.type3)) - Computes the quantile(s) of the input, given one or more probabilities p.By default, if p is a Slice , built-in dynamic array, or type with asSlice, then the output type is a reference-counted copy of the input. A compile-time parameter is provided to instead overwrite the input in-place. For all QuantileAlgo except QuantileAlgo.type1 and QuantileAlgo.type3, by default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true. For QuantileAlgo.type1 and QuantileAlgo.type3, the return type is the elementType of the input.Parameters:
F controls type of output quantileAlgo algorithm for calculating quantile (default: QuantileAlgo.type7) allowModifySlice controls whether the input is modified in place, default is false Returns:The quantile of all the elements in the input at probability p.See Also:- quantileType!(F, quantileAlgo)
quantile
(Iterator, size_t N, SliceKind kind, G)(Slice!(Iterator, N, kind)slice
, Gp
)
if (isFloatingPoint!(Unqual!G)); - Parameters:
Slice!(Iterator, N, kind) slice
slice G p
probability - auto
quantile
(IteratorA, size_t N, SliceKind kindA, IteratorB, SliceKind kindB)(Slice!(IteratorA, N, kindA)slice
, Slice!(IteratorB, 1, kindB)p
)
if (isFloatingPoint!(elementType!(Slice!IteratorB)));
autoquantile
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
, scope const F[]p
...)
if (isFloatingPoint!(elementType!(F[])));
autoquantile
(SliceLike, G)(SliceLikex
, Gp
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike && isFloatingPoint!(Unqual!G));
autoquantile
(SliceLikeX, SliceLikeP)(SliceLikeXx
, SliceLikePp
)
if (isConvertibleToSlice!SliceLikeX && !isSlice!SliceLikeX && isConvertibleToSlice!SliceLikeP && !isSlice!SliceLikeP); - Parameters:
Slice!(IteratorA, N, kindA) slice
slice Slice!(IteratorB, 1, kindB) p
probability slice
- template
quantile
(QuantileAlgo quantileAlgo = QuantileAlgo.type7, bool allowModifySlice = false, bool allowModifyProbability = false)
templatequantile
(F, string quantileAlgo, bool allowModifySlice = false, bool allowModifyProbability = false)
templatequantile
(string quantileAlgo, bool allowModifySlice = false, bool allowModifyProbability = false) - Examples:Simple example
import mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3.0, 1.0, 4.0, 2.0, 0.0].sliced; assert(x.quantile(0.5).approxEqual(2.0)); auto qtile = [0.25, 0.75].sliced; assert(x.quantile(qtile).all!approxEqual([1.0, 3.0])); assert(x.quantile(0.25, 0.75).all!approxEqual([1.0, 3.0]));
Examples:Modify probability in placeimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3.0, 1.0, 4.0, 2.0, 0.0].sliced; auto qtile = [0.25, 0.75].sliced; auto qtile_copy = qtile.dup; x.quantile!("type7", false, true)(qtile); assert(qtile.all!approxEqual([1.0, 3.0])); assert(!qtile.all!approxEqual(qtile_copy));
Examples:Quantile of vectorimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [1.0, 9.8, 0.2, 8.5, 5.8, 3.5, 4.5, 8.2, 5.2, 5.2, 2.5, 1.8, 2.2, 3.8, 5.2, 9.2, 6.2, 9.2, 9.2, 8.5].sliced; assert(x.quantile(0.5).approxEqual(5.20)); auto qtile = [0.25, 0.75].sliced; assert(x.quantile(qtile).all!approxEqual([3.250, 8.500]));
Examples:Quantile of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.slice: sliced; auto x = [ [1.0, 9.8, 0.2, 8.5, 5.8, 3.5, 4.5, 8.2, 5.2, 5.2], [2.5, 1.8, 2.2, 3.8, 5.2, 9.2, 6.2, 9.2, 9.2, 8.5] ].fuse; assert(x.quantile(0.5).approxEqual(5.20)); auto qtile = [0.25, 0.75].sliced; assert(x.quantile(qtile).all!approxEqual([3.250, 8.500]));
Examples:Row quantile of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.slice: sliced; import mir.ndslice.topology: alongDim, byDim, map, flattened; auto x = [ [1.0, 9.8, 0.2, 8.5, 5.8, 3.5, 4.5, 8.2, 5.2, 5.2], [2.5, 1.8, 2.2, 3.8, 5.2, 9.2, 6.2, 9.2, 9.2, 8.5] ].fuse; auto result0 = [5.200, 5.700]; // Use byDim or alongDim with map to compute median of row/column. assert(x.byDim!0.map!(a => a.quantile(0.5)).all!approxEqual(result0)); assert(x.alongDim!1.map!(a => a.quantile(0.5)).all!approxEqual(result0)); auto qtile = [0.25, 0.75].sliced; auto result1 = [[3.750, 7.600], [2.825, 9.025]]; assert(x.byDim!0.map!(a => a.quantile(qtile)).all!(all!approxEqual)(result1));
Examples:Allow modification of inputimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3.0, 1.0, 4.0, 2.0, 0.0].sliced; auto x_copy = x.dup; auto result = x.quantile!(QuantileAlgo.type7, true)(0.5); assert(!x.all!approxEqual(x_copy));
Examples:Double-check probability is not modifiedimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3.0, 1.0, 4.0, 2.0, 0.0].sliced; auto qtile = [0.25, 0.75].sliced; auto qtile_copy = qtile.dup; auto result = x.quantile!("type7", false, false)(qtile); assert(result.all!approxEqual([1.0, 3.0])); assert(qtile.all!approxEqual(qtile_copy));
Examples:Can also set algorithm typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [1.0, 9.8, 0.2, 8.5, 5.8, 3.5, 4.5, 8.2, 5.2, 5.2, 2.5, 1.8, 2.2, 3.8, 5.2, 9.2, 6.2, 9.2, 9.2, 8.5].sliced; assert(x.quantile!"type1"(0.5).approxEqual(5.20)); assert(x.quantile!"type2"(0.5).approxEqual(5.20)); assert(x.quantile!"type3"(0.5).approxEqual(5.20)); assert(x.quantile!"type4"(0.5).approxEqual(5.20)); assert(x.quantile!"type5"(0.5).approxEqual(5.20)); assert(x.quantile!"type6"(0.5).approxEqual(5.20)); assert(x.quantile!"type7"(0.5).approxEqual(5.20)); assert(x.quantile!"type8"(0.5).approxEqual(5.20)); assert(x.quantile!"type9"(0.5).approxEqual(5.20));
Examples:Can also set algorithm or output typeimport mir.ndslice.slice: sliced; auto a = [1, 1e100, 1, -1e100].sliced; auto x = a * 10_000; auto result0 = x.quantile!float(0.5); assert(result0 == 10_000f); static assert(is(typeof(result0) == float)); auto result1 = x.quantile!(float, "type8")(0.5); assert(result1 == 10_000f); static assert(is(typeof(result1) == float));
Examples:Support for integral and user-defined types for type 1 & 3import mir.ndslice.topology: repeat; auto x = uint.max.repeat(3); assert(x.quantile!(uint, "type1")(0.5) == uint.max); assert(x.quantile!(uint, "type3")(0.5) == uint.max); static struct Foo { float x; alias x this; } Foo[] foo = [Foo(1f), Foo(2f), Foo(3f)]; assert(foo.quantile!"type1"(0.5) == 2f); assert(foo.quantile!"type3"(0.5) == 2f);
Examples:Compute quantile along specified dimention of tensorsimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: as, iota, alongDim, map, repeat; auto x = [ [0.0, 1, 3], [4.0, 5, 7] ].fuse; assert(x.quantile(0.5).approxEqual(3.5)); auto m0 = [2.0, 3.0, 5.0]; assert(x.alongDim!0.map!(a => a.quantile(0.5)).all!approxEqual(m0)); assert(x.alongDim!(-2).map!(a => a.quantile(0.5)).all!approxEqual(m0)); auto m1 = [1.0, 5.0]; assert(x.alongDim!1.map!(a => a.quantile(0.5)).all!approxEqual(m1)); assert(x.alongDim!(-1).map!(a => a.quantile(0.5)).all!approxEqual(m1)); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!(a => a.quantile(0.5)).all!approxEqual(iota([3, 4, 5], 3 * 4 * 5 / 2)));
Examples:Support for arrayimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; double[] x = [3.0, 1.0, 4.0, 2.0, 0.0]; assert(x.quantile(0.5).approxEqual(2.0)); double[] qtile = [0.25, 0.75]; assert(x.quantile(qtile).all!approxEqual([1.0, 3.0]));
- quantileType!(Slice!Iterator, quantileAlgo)
quantile
(Iterator, size_t N, SliceKind kind, G)(Slice!(Iterator, N, kind)slice
, Gp
)
if (isFloatingPoint!(Unqual!G));
autoquantile
(IteratorA, size_t N, SliceKind kindA, IteratorB, SliceKind kindB)(Slice!(IteratorA, N, kindA)slice
, Slice!(IteratorB, 1, kindB)p
)
if (isFloatingPoint!(elementType!(Slice!IteratorB)));
autoquantile
(Iterator, size_t N, SliceKind kind, G)(Slice!(Iterator, N, kind)slice
, scope G[]p
...)
if (isFloatingPoint!(elementType!(G[])));
autoquantile
(SliceLike, G)(SliceLikex
, Gp
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike && isFloatingPoint!(Unqual!G));
autoquantile
(SliceLikeX, SliceLikeP)(SliceLikeXx
, SliceLikePp
)
if (isConvertibleToSlice!SliceLikeX && !isSlice!SliceLikeX && isConvertibleToSlice!SliceLikeP && !isSlice!SliceLikeP); - Parameters:
Slice!(Iterator, N, kind) slice
slice G p
probability
- template
interquartileRange
(F, QuantileAlgo quantileAlgo = QuantileAlgo.type7, bool allowModifySlice = false)
templateinterquartileRange
(QuantileAlgo quantileAlgo = QuantileAlgo.type7, bool allowModifySlice = false)
templateinterquartileRange
(F, string quantileAlgo, bool allowModifySlice = false)
templateinterquartileRange
(string quantileAlgo, bool allowModifySlice = false) - Computes the interquartile range of the input.By default, this function computes the result using quantile, i.e. result = quantile(x, 0.75) - quantile(x, 0.25). There are also overloads for providing a low value, as in result = quantile(x, 1 - low) - quantile(x, low) and both a low and high value, as in result = quantile(x, high) - quantile(x, low). For all QuantileAlgo except QuantileAlgo.type1 and QuantileAlgo.type3, by default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true. For QuantileAlgo.type1 and QuantileAlgo.type3, the return type is the elementType of the input.Parameters:
F controls type of output quantileAlgo algorithm for calculating quantile (default: QuantileAlgo.type7) allowModifySlice controls whether the input is modified in place, default is false Returns:The interquartile range of the input.See Also:Examples:Simple exampleimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3.0, 1.0, 4.0, 2.0, 0.0].sliced; assert(x.interquartileRange.approxEqual(2.0)); assert(x.interquartileRange(0.25).approxEqual(2.0)); assert(x.interquartileRange(0.25, 0.75).approxEqual(2.0));
Examples:Interquartile Range of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [1.0, 9.8, 0.2, 8.5, 5.8, 3.5, 4.5, 8.2, 5.2, 5.2, 2.5, 1.8, 2.2, 3.8, 5.2, 9.2, 6.2, 9.2, 9.2, 8.5].sliced; assert(x.interquartileRange.approxEqual(5.25));
Examples:Interquartile Range of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.slice: sliced; auto x = [ [1.0, 9.8, 0.2, 8.5, 5.8, 3.5, 4.5, 8.2, 5.2, 5.2], [2.5, 1.8, 2.2, 3.8, 5.2, 9.2, 6.2, 9.2, 9.2, 8.5] ].fuse; assert(x.interquartileRange.approxEqual(5.25));
Examples:Allow modification of inputimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3.0, 1.0, 4.0, 2.0, 0.0].sliced; auto x_copy = x.dup; auto result = x.interquartileRange!(QuantileAlgo.type7, true); assert(!x.all!approxEqual(x_copy));
Examples:Can also set algorithm typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [1.0, 9.8, 0.2, 8.5, 5.8, 3.5, 4.5, 8.2, 5.2, 5.2, 2.5, 1.8, 2.2, 3.8, 5.2, 9.2, 6.2, 9.2, 9.2, 8.5].sliced; assert(x.interquartileRange!"type1".approxEqual(6.0)); assert(x.interquartileRange!"type2".approxEqual(5.5)); assert(x.interquartileRange!"type3".approxEqual(6.0)); assert(x.interquartileRange!"type4".approxEqual(6.0)); assert(x.interquartileRange!"type5".approxEqual(5.5)); assert(x.interquartileRange!"type6".approxEqual(5.75)); assert(x.interquartileRange!"type7".approxEqual(5.25)); assert(x.interquartileRange!"type8".approxEqual(5.583333)); assert(x.interquartileRange!"type9".approxEqual(5.5625));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto a = [1, 1e34, 1, -1e34, 0].sliced; auto x = a * 10_000; auto result0 = x.interquartileRange!float; assert(result0.approxEqual(10_000)); static assert(is(typeof(result0) == float)); auto result1 = x.interquartileRange!(float, "type8"); assert(result1.approxEqual(6.666667e37)); static assert(is(typeof(result1) == float));
Examples:Support for arrayimport mir.math.common: approxEqual; double[] x = [3.0, 1.0, 4.0, 2.0, 0.0]; assert(x.interquartileRange.approxEqual(2.0));
- quantileType!(F, quantileAlgo)
interquartileRange
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
); - Parameters:
Slice!(Iterator, N, kind) slice
slice - quantileType!(F, quantileAlgo)
interquartileRange
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
, Flo
= 0.25); - Parameters:
Slice!(Iterator, N, kind) slice
slice F lo
low value - quantileType!(F, quantileAlgo)
interquartileRange
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
, Flo
, Fhi
); - Parameters:
Slice!(Iterator, N, kind) slice
slice F lo
low value F hi
high value - quantileType!(F[], quantileAlgo)
interquartileRange
(scope F[]array
...);
autointerquartileRange
(SliceLike)(SliceLikex
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - Parameters:
F[] array
array
- template
medianAbsoluteDeviation
(F)
meanType!(Slice!(Iterator, N, kind))medianAbsoluteDeviation
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
);
meanType!(T[])medianAbsoluteDeviation
(T)(scope const T[]ar
...);
automedianAbsoluteDeviation
(SliceLike)(SliceLikex
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - Calculates the median absolute deviation about the median of the input.By default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
F output type Returns:The median absolute deviation of the inputExamples:medianAbsoluteDeviation of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.medianAbsoluteDeviation.approxEqual(1.25));
Examples:Median Absolute Deviation of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.medianAbsoluteDeviation.approxEqual(1.25));
Examples:Median Absolute Deviation of dynamic arrayimport mir.math.common: approxEqual; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0]; assert(x.medianAbsoluteDeviation.approxEqual(1.25));
- meanType!F
medianAbsoluteDeviation
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
); - Parameters:
Slice!(Iterator, N, kind) slice
slice
- template
dispersion
(alias centralTendency = mean, alias transform = "a * a", alias summarize = mean) - Calculates the dispersion of the input.For an input x, this function first centers x by subtracting each e in x by the result of centralTendency, then it transforms the centered values using the function transform, and then finally summarizes that information using the summarize funcion. The default functions provided are equivalent to calculating the population variance. The centralTendency default is the mean function, which results in the input being centered about the mean. The default transform function will square the centered values. The default summarize function is mean, which will return the mean of the squared centered values.Parameters:
centralTendency function that will produce the value that the input is centered about, default is mean transform function to transform centered values, default squares the centered values summarize function to summarize the transformed centered values, default is mean Returns:The dispersion of the inputExamples:Simple examplesimport mir.complex: Complex; import mir.complex.math: capproxEqual = approxEqual; import mir.functional: naryFun; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; alias C = Complex!double; assert(dispersion([1.0, 2, 3]).approxEqual(2.0 / 3)); assert(dispersion([C(1.0, 3), C(2), C(3)]).capproxEqual(C(-4, -6) / 3)); assert(dispersion!(mean!float, "a * a", mean!float)([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(17.5 / 6)); static assert(is(typeof(dispersion!(mean!float, "a ^^ 2", mean!float)([1, 2, 3])) == float));
Examples:Dispersion of vectorimport mir.math.common: approxEqual; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0]; assert(x.dispersion.approxEqual(54.76562 / 12));
Examples:Dispersion of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.dispersion.approxEqual(54.76562 / 12));
Examples:Column dispersion of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [0.0, 1.0, 1.5, 2.0], [3.5, 4.25, 2.0, 7.5], [5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [13.16667 / 3, 7.041667 / 3, 0.1666667 / 3, 30.16667 / 3]; // Use byDim or alongDim with map to compute dispersion of row/column. assert(x.byDim!1.map!dispersion.all!approxEqual(result)); assert(x.alongDim!0.map!dispersion.all!approxEqual(result)); // FIXME // Without using map, computes the dispersion of the whole slice // assert(x.byDim!1.dispersion == x.sliced.dispersion); // assert(x.alongDim!0.dispersion == x.sliced.dispersion);
Examples:Can also set functions to change type of dispersion that is usedimport mir.functional: naryFun; import mir.math.common: approxEqual, fabs, sqrt; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0]; alias square = naryFun!"a * a"; // Other population variance examples assert(x.dispersion.approxEqual(54.76562 / 12)); assert(x.dispersion!mean.approxEqual(54.76562 / 12)); assert(x.dispersion!(mean, square).approxEqual(54.76562 / 12)); assert(x.dispersion!(mean, square, mean).approxEqual(54.76562 / 12)); // Population standard deviation assert(x.dispersion!(mean, square, mean).sqrt.approxEqual(sqrt(54.76562 / 12))); // Mean absolute deviation about the mean assert(x.dispersion!(mean, fabs, mean).approxEqual(21.0 / 12)); //Mean absolute deviation about the median assert(x.dispersion!(median, fabs, mean).approxEqual(19.25000 / 12)); //Median absolute deviation about the mean assert(x.dispersion!(mean, fabs, median).approxEqual(1.43750)); //Median absolute deviation about the median assert(x.dispersion!(median, fabs, median).approxEqual(1.25000));
Examples:For integral slices, pass output type to centralTendency, transform, and summary functions as template parameter to ensure output type is correct.import mir.functional: naryFun; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; alias square = naryFun!"a * a"; auto y = x.dispersion; assert(y.approxEqual(50.91667 / 12)); static assert(is(typeof(y) == double)); assert(x.dispersion!(mean!float, square, mean!float).approxEqual(50.91667 / 12));
Examples:Dispersion works for complex numbers and other user-defined types (provided that the centralTendency, transform, and summary functions are defined for those types)import mir.ndslice.slice: sliced; import std.complex: Complex; import std.math.operations: isClose; auto x = [Complex!double(1, 2), Complex!double(2, 3), Complex!double(3, 4), Complex!double(4, 5)].sliced; assert(x.dispersion.isClose(Complex!double(0, 10) / 4));
Examples:Compute mean tensors along specified dimention of tensorsimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: as, iota, alongDim, map, repeat; auto x = [ [0.0, 1, 2], [3.0, 4, 5] ].fuse; assert(x.dispersion.approxEqual(17.5 / 6)); auto m0 = [2.25, 2.25, 2.25]; assert(x.alongDim!0.map!dispersion.all!approxEqual(m0)); assert(x.alongDim!(-2).map!dispersion.all!approxEqual(m0)); auto m1 = [2.0 / 3, 2.0 / 3]; assert(x.alongDim!1.map!dispersion.all!approxEqual(m1)); assert(x.alongDim!(-1).map!dispersion.all!approxEqual(m1)); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!dispersion.all!approxEqual(repeat(1800.0 / 2, 3, 4, 5)));
Examples:Arbitrary dispersionimport mir.functional: naryFun; import mir.math.common: approxEqual; alias square = naryFun!"a * a"; assert(dispersion(1.0, 2, 3).approxEqual(2.0 / 3)); assert(dispersion!(mean!float, square, mean!float)(1, 2, 3).approxEqual(2f / 3));
- auto
dispersion
(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)slice
);
autodispersion
(T)(scope const T[]ar
...);
autodispersion
(SliceLike)(SliceLikex
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - Parameters:
Slice!(Iterator, N, kind) slice
slice
- enum
SkewnessAlgo
: int; - Skewness algorithms.See Also:
online
- Similar to Welford's algorithm for updating variance, but adjusted for skewness. Can also put another SkewnessAccumulator of the same type, which uses the parallel algorithm from Terriberry that extends the work of Chan et al.
naive
- Calculates skewness using (E(x^^3) - 3 * mu * sigma ^^ 2 + mu ^^ 3) / (sigma ^^ 3)This algorithm can be numerically unstable.
twoPass
- Calculates skewness by first calculating the mean, then calculating E((x - E(x)) ^^ 3) / (E((x - E(x)) ^^ 2) ^^ 1.5)
threePass
- Calculates skewness by first calculating the mean, then the standard deviation, then calculating E(((x - E(x)) / (E((x - E(x)) ^^ 2) ^^ 0.5)) ^^ 3)
assumeZeroMean
- Calculates skewness assuming the mean of the input is zero.
hybrid
- When slices, slice-like objects, or ranges are the inputs, uses the two-pass algorithm. When an individual data-point is added, uses the online algorithm.
- struct
SkewnessAccumulator
(T, SkewnessAlgo skewnessAlgo, Summation summation) if (isMutable!T && (skewnessAlgo == SkewnessAlgo.naive)); - Examples:naive
import mir.math.common: pow; import mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; SkewnessAccumulator!(double, SkewnessAlgo.naive, Summation.naive) v; v.put(x); v.skewness(true).shouldApprox == (117.005859 / 12) / pow(54.765625 / 12, 1.5); v.skewness(false).shouldApprox == (117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0); v.put(4.0); v.skewness(true).shouldApprox == (100.238166 / 13) / pow(57.019231 / 13, 1.5); v.skewness(false).shouldApprox == (100.238166 / 13) / pow(57.019231 / 12, 1.5) * (13.0 ^^ 2) / (12.0 * 11.0);
- alias
S
= Summator!(T, summation); - this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - @property size_t
count
(); - @property F
mean
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
); - F
sumOfCubes
(F = T)(); - F
sumOfSquares
(F = T)(); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
);
- struct
SkewnessAccumulator
(T, SkewnessAlgo skewnessAlgo, Summation summation) if (isMutable!T && (skewnessAlgo == SkewnessAlgo.online)); - Examples:online
import mir.math.common: approxEqual, pow; import mir.math.sum: Summation; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; SkewnessAccumulator!(double, SkewnessAlgo.online, Summation.naive) v; v.put(x); assert(v.skewness(true).approxEqual((117.005859 / 12) / pow(54.765625 / 12, 1.5))); assert(v.skewness(false).approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0))); v.put(4.0); assert(v.skewness(true).approxEqual((100.238166 / 13) / pow(57.019231 / 13, 1.5))); assert(v.skewness(false).approxEqual((100.238166 / 13) / pow(57.019231 / 12, 1.5) * (13.0 ^^ 2) / (12.0 * 11.0)));
- alias
S
= Summator!(T, summation); - this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, SkewnessAlgo skewAlgo, Summation sumAlgo)(SkewnessAccumulator!(U, skewAlgo, sumAlgo)v
)
if (skewAlgo != SkewnessAlgo.assumeZeroMean); - @property size_t
count
(); - @property F
mean
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
);
- struct
SkewnessAccumulator
(T, SkewnessAlgo skewnessAlgo, Summation summation) if (isMutable!T && (skewnessAlgo == SkewnessAlgo.twoPass)); - Examples:twoPass
import mir.math.common: approxEqual, sqrt; import mir.math.sum: Summation; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = SkewnessAccumulator!(double, SkewnessAlgo.twoPass, Summation.naive)(x); assert(v.skewness(true).approxEqual(12.000999 / 12)); assert(v.skewness(false).approxEqual(12.000999 / 12 * sqrt(12.0 * 11.0) / 10.0));
- alias
S
= Summator!(T, summation); - this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isInputRange!Range && !isConvertibleToSlice!Range && is(elementType!Range : T)); - size_t
count
()(); - F
mean
(F = T)(); - F
variance
(F = T)(boolisPopulation
); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
);
- struct
SkewnessAccumulator
(T, SkewnessAlgo skewnessAlgo, Summation summation) if (isMutable!T && (skewnessAlgo == SkewnessAlgo.threePass)); - Examples:threePass
import mir.math.common: approxEqual, sqrt; import mir.math.sum: Summation; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = SkewnessAccumulator!(double, SkewnessAlgo.threePass, Summation.naive)(x); assert(v.skewness(true).approxEqual(12.000999 / 12)); assert(v.skewness(false).approxEqual(12.000999 / 12 * sqrt(12.0 * 11.0) / 10.0));
- alias
S
= Summator!(T, summation); - this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isInputRange!Range && !isConvertibleToSlice!Range && is(elementType!Range : T)); - size_t
count
()(); - F
mean
(F = T)(); - F
variance
(F = T)(boolisPopulation
); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
scaledSumOfCubes
(F = T)(); - F
skewness
(F = T)(boolisPopulation
);
- struct
SkewnessAccumulator
(T, SkewnessAlgo skewnessAlgo, Summation summation) if (isMutable!T && (skewnessAlgo == SkewnessAlgo.assumeZeroMean)); - Examples:assumeZeroMean
import mir.math.common: approxEqual, pow; import mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.stat.transform: center; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a.center; SkewnessAccumulator!(double, SkewnessAlgo.assumeZeroMean, Summation.naive) v; v.put(x); assert(v.skewness(true).approxEqual((117.005859 / 12) / pow(54.765625 / 12, 1.5))); assert(v.skewness(false).approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * 12.0 ^^ 2 / (11.0 * 10.0))); v.put(4.0); assert(v.skewness(true).approxEqual((181.005859 / 13) / pow(70.765625 / 13, 1.5))); assert(v.skewness(false).approxEqual((181.005859 / 13) / pow(70.765625 / 12, 1.5) * 13.0 ^^ 2 / (12.0 * 11.0)));
- alias
S
= Summator!(T, summation); - this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, Summation sumAlgo)(SkewnessAccumulator!(U, skewnessAlgo, sumAlgo)v
); - @property size_t
count
(); - @property F
mean
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
); - @property F
centeredSumOfCubes
(F = T)(); - @property F
centeredSumOfSquares
(F = T)(); - @property F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
);
- struct
SkewnessAccumulator
(T, SkewnessAlgo skewnessAlgo, Summation summation) if (isMutable!T && (skewnessAlgo == SkewnessAlgo.hybrid)); - Examples:hybrid
import mir.math.common: approxEqual, pow; import mir.math.sum: Summation; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = SkewnessAccumulator!(double, SkewnessAlgo.hybrid, Summation.naive)(x); assert(v.skewness(true).approxEqual((117.005859 / 12) / pow(54.765625 / 12, 1.5))); assert(v.skewness(false).approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0))); v.put(4.0); assert(v.skewness(true).approxEqual((100.238166 / 13) / pow(57.019231 / 13, 1.5))); assert(v.skewness(false).approxEqual((100.238166 / 13) / pow(57.019231 / 12, 1.5) * (13.0 ^^ 2) / (12.0 * 11.0)));
- alias
S
= Summator!(T, summation); - this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isIterable!Range && !isConvertibleToSlice!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, SkewnessAlgo skewAlgo, Summation sumAlgo)(SkewnessAccumulator!(U, skewAlgo, sumAlgo)v
)
if (skewAlgo != SkewnessAlgo.assumeZeroMean); - @property size_t
count
(); - @property F
mean
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
);
- template
skewness
(F, SkewnessAlgo skewnessAlgo = SkewnessAlgo.hybrid, Summation summation = Summation.appropriate)
templateskewness
(SkewnessAlgo skewnessAlgo = SkewnessAlgo.hybrid, Summation summation = Summation.appropriate)
templateskewness
(F, string skewnessAlgo, string summation = "appropriate")
templateskewness
(string skewnessAlgo, string summation = "appropriate") - Calculates the skewness of the inputBy default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
F controls type of output skewnessAlgo algorithm for calculating skewness (default: SkewnessAlgo.hybrid) summation algorithm for calculating sums (default: Summation.appropriate) Returns:The skewness of the input, must be floating point or complex typeSee Also:Examples:Simple exampleimport mir.math.common: approxEqual, pow; import mir.ndslice.slice: sliced; assert(skewness([1.0, 2, 3]).approxEqual(0.0)); assert(skewness([1.0, 2, 4]).approxEqual((2.222222 / 3) / pow(4.666667 / 2, 1.5) * (3.0 ^^ 2) / (2.0 * 1.0))); assert(skewness([1.0, 2, 4], true).approxEqual((2.222222 / 3) / pow(4.666667 / 3, 1.5))); assert(skewness!float([0, 1, 2, 3, 4, 6].sliced(3, 2)).approxEqual(0.462910)); static assert(is(typeof(skewness!float([1, 2, 3])) == float));
Examples:Skewness of vectorimport mir.math.common: approxEqual, pow; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0]; assert(x.skewness.approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0)));
Examples:Skewness of matriximport mir.math.common: approxEqual, pow; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.skewness.approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0)));
Examples:Column skewness of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual, pow; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [0.0, 1.0, 1.5, 2.0], [3.5, 4.25, 2.0, 7.5], [5.0, 1.0, 1.5, 0.0] ].fuse; auto result = [-1.090291, 1.732051, 1.732051, 1.229809]; // Use byDim or alongDim with map to compute skewness of row/column. assert(x.byDim!1.map!skewness.all!approxEqual(result)); assert(x.alongDim!0.map!skewness.all!approxEqual(result)); // FIXME // Without using map, computes the skewness of the whole slice // assert(x.byDim!1.skewness == x.sliced.skewness); // assert(x.alongDim!0.skewness == x.sliced.skewness);
Examples:Can also set algorithm typeimport mir.math.common: approxEqual, pow, sqrt; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a + 100_000_000_000; // The online algorithm is numerically unstable in this case auto y = x.skewness!"online"; assert(!y.approxEqual((117.005859 / 12) / pow(54.765625 / 11, 1.5) * (12.0 ^^ 2) / (11.0 * 10.0))); // The naive algorithm has an assert error in this case because standard // deviation is calculated naively as zero. The skewness formula would then // be dividing by zero. //auto z0 = x.skewness!(real, "naive"); // However, the two-pass and three-pass algorithms are numerically stable in this case auto z1 = x.skewness!"twoPass"; assert(z1.approxEqual(12.000999 / 12 * sqrt(12.0 * 11.0) / 10.0)); assert(!z1.approxEqual(y)); auto z2 = x.skewness!"threePass"; assert(z2.approxEqual((12.000999 / 12) * sqrt(12.0 * 11.0) / 10.0)); assert(!z2.approxEqual(y)); // And the assumeZeroMean algorithm provides the incorrect answer, as expected auto z3 = x.skewness!"assumeZeroMean"; assert(!z3.approxEqual(y));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; //Set population skewness, skewness algorithm, sum algorithm or output type auto a = [1.0, 1e98, 1, -1e98].sliced; auto x = a * 10_000; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.skewness(false).approxEqual(0.0)); assert(x.skewness(true).approxEqual(0.0)); assert(x.skewness!("online").approxEqual(0.0)); assert(x.skewness!("online", "kbn").approxEqual(0.0)); assert(x.skewness!("online", "kb2").approxEqual(0.0)); assert(x.skewness!("online", "precise").approxEqual(0.0)); assert(x.skewness!(double, "online", "precise").approxEqual(0.0)); assert(x.skewness!(double, "online", "precise")(true).approxEqual(0.0)); auto y = [uint.max - 2, uint.max - 1, uint.max].sliced; auto z = y.skewness!(ulong, "threePass"); assert(z == 0.0); static assert(is(typeof(z) == double));
Examples:For integral slices, can pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.skewness; assert(y.approxEqual(0.925493)); static assert(is(typeof(y) == double)); assert(x.skewness!float.approxEqual(0.925493));
Examples:Skewness works for other user-defined types (provided they can be converted to a floating point)static struct Foo { float x; alias x this; } Foo[] foo = [Foo(1f), Foo(2f), Foo(3f)]; assert(foo.skewness == 0f);
Examples:Compute skewness along specified dimention of tensorsimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: as, iota, alongDim, map, repeat; auto x = [ [0.0, 1, 3], [3.0, 4, 5], [6.0, 7, 7], ].fuse; assert(x.skewness.approxEqual(-0.308571)); auto m0 = [0, 0.0, 0.0]; assert(x.alongDim!0.map!skewness.all!approxEqual(m0)); assert(x.alongDim!(-2).map!skewness.all!approxEqual(m0)); auto m1 = [0.935220, 0.0, -1.732051]; assert(x.alongDim!1.map!skewness.all!approxEqual(m1)); assert(x.alongDim!(-1).map!skewness.all!approxEqual(m1)); assert(iota(3, 4, 5, 6).as!double.alongDim!0.map!skewness.all!approxEqual(repeat(0.0, 4, 5, 6)));
Examples:Arbitrary skewnessassert(skewness(1.0, 2, 3) == 0.0); assert(skewness!float(1, 2, 3) == 0f);
- stdevType!F
skewness
(Range)(Ranger
, boolisPopulation
= false)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable bool isPopulation
true if population skewness, false if sample skewness (default) - stdevType!F
skewness
(scope const F[]ar
...); - Parameters:
F[] ar
values
- enum
KurtosisAlgo
: int; - Kurtosis algorithms.See Also:
online
- Similar to Welford's algorithm for updating variance, but adjusted for kurtosis. Can also put another KurtosisAccumulator of the same type, which uses the parallel algorithm from Terriberry that extends the work of Chan et al.
naive
- Calculates kurtosis using (E(x^^4) - 4 * E(x) * E(x ^^ 3) + 6 * (E(x) ^^ 2) E(X ^^ 2) + 3 E(x) ^^ 4) / sigma ^ 2 (allowing for adjustments for population/sample kurtosis).This algorithm can be numerically unstable.
twoPass
- Calculates kurtosis by first calculating the mean, then calculating E((x - E(x)) ^^ 4) / (E((x - E(x)) ^^ 2) ^^ 2)
threePass
- Calculates kurtosis by first calculating the mean, then the standard deviation, then calculating E(((x - E(x)) / (E((x - E(x)) ^^ 2) ^^ 0.5)) ^^ 4)
assumeZeroMean
- Calculates kurtosis assuming the mean of the input is zero.
hybrid
- When slices, slice-like objects, or ranges are the inputs, uses the two-pass algorithm. When an individual data-point is added, uses the online algorithm.
- struct
KurtosisAccumulator
(T, KurtosisAlgo kurtosisAlgo, Summation summation) if (isMutable!T && (kurtosisAlgo == KurtosisAlgo.naive)); - Examples:naive
import mir.math.common: pow; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; KurtosisAccumulator!(double, KurtosisAlgo.naive, Summation.naive) v; v.put(x); v.kurtosis(true, true).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0); v.kurtosis(true, false).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) - 3; v.kurtosis(false, false).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0); v.kurtosis(false, true).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0) + 3; v.skewness(true).shouldApprox == (117.005859 / 12) / pow(54.765625 / 12, 1.5); v.put(4.0); v.kurtosis(true, true).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0); v.kurtosis(true, false).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) - 3; v.kurtosis(false, false).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) * (12.0 * 14.0) / (11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0); v.kurtosis(false, true).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) * (12.0 * 14.0) / (11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0) + 3; v.skewness(true).shouldApprox == (100.238166 / 13) / pow(57.019231 / 13, 1.5);
- alias
S
= Summator!(T, summation); - this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, Summation sumAlgo)(KurtosisAccumulator!(U, kurtosisAlgo, sumAlgo)v
); - size_t
count
(); - F
mean
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
); - F
sumOfSquares
(F = T)(); - F
sumOfCubes
(F = T)(); - F
sumOfQuarts
(F = T)(); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
centeredSumOfQuarts
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
scaledSumOfQuarts
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
); - F
kurtosis
(F = T)(boolisPopulation
, boolisRaw
);
- struct
KurtosisAccumulator
(T, KurtosisAlgo kurtosisAlgo, Summation summation) if (isMutable!T && (kurtosisAlgo == KurtosisAlgo.online)); - Examples:online
import mir.math.common: approxEqual, pow; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; KurtosisAccumulator!(double, KurtosisAlgo.online, Summation.naive) v; v.put(x); v.kurtosis(true, true).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0); v.kurtosis(true, false).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) - 3; v.kurtosis(false, false).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0); v.kurtosis(false, true).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0) + 3; v.put(4.0); v.kurtosis(true, true).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0); v.kurtosis(true, false).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) - 3; v.kurtosis(false, false).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) * (12.0 * 14.0) / (11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0); v.kurtosis(false, true).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) * (12.0 * 14.0) / (11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0) + 3;
- alias
S
= Summator!(T, summation); - this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, KurtosisAlgo kurtAlgo, Summation sumAlgo)(KurtosisAccumulator!(U, kurtAlgo, sumAlgo)v
); - size_t
count
(); - F
centeredSumOfQuarts
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
centeredSumOfSquares
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
scaledSumOfQuarts
(F = T)(boolisPopulation
); - F
mean
(F = T)(); - F
variance
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
); - F
kurtosis
(F = T)(boolisPopulation
, boolisRaw
);
- struct
KurtosisAccumulator
(T, KurtosisAlgo kurtosisAlgo, Summation summation) if (isMutable!T && (kurtosisAlgo == KurtosisAlgo.twoPass)); - Examples:twoPass
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = KurtosisAccumulator!(double, KurtosisAlgo.twoPass, Summation.naive)(x); assert(v.kurtosis(true, true).approxEqual(38.062853 / 12)); assert(v.kurtosis(true, false).approxEqual(38.062853 / 12 - 3.0)); assert(v.kurtosis(false, true).approxEqual(38.062853 / 12 * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)) + 3.0); assert(v.kurtosis(false, false).approxEqual(38.062853 / 12 * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)));
- alias
S
= Summator!(T, summation); - this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isInputRange!Range && !isConvertibleToSlice!Range && is(elementType!Range : T)); - size_t
count
()(); - F
mean
(F = T)(); - F
variance
(F = T)(boolisPopulation
); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
centeredSumOfQuarts
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
scaledSumOfQuarts
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
); - F
kurtosis
(F = T)(boolisPopulation
, boolisRaw
);
- struct
KurtosisAccumulator
(T, KurtosisAlgo kurtosisAlgo, Summation summation) if (isMutable!T && (kurtosisAlgo == KurtosisAlgo.threePass)); - Examples:threePass
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = KurtosisAccumulator!(double, KurtosisAlgo.threePass, Summation.naive)(x); assert(v.kurtosis(true, true).approxEqual(38.062853 / 12)); assert(v.kurtosis(true, false).approxEqual(38.062853 / 12 - 3.0)); assert(v.kurtosis(false, true).approxEqual(38.062853 / 12 * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)) + 3.0); assert(v.kurtosis(false, false).approxEqual(38.062853 / 12 * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)));
- alias
S
= Summator!(T, summation); - this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isInputRange!Range && !isConvertibleToSlice!Range && is(elementType!Range : T)); - size_t
count
()(); - F
mean
(F = T)(); - F
variance
(F = T)(boolisPopulation
); - F
centeredSumOfSquares
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
centeredSumOfQuarts
(F = T)(); - F
scaledSumOfCubes
(F = T)(); - F
scaledSumOfQuarts
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
scaledSumOfQuarts
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
); - F
kurtosis
(F = T)(boolisPopulation
, boolisRaw
);
- struct
KurtosisAccumulator
(T, KurtosisAlgo kurtosisAlgo, Summation summation) if (isMutable!T && (kurtosisAlgo == KurtosisAlgo.assumeZeroMean)); - Examples:assumeZeroMean
import mir.math.common: approxEqual, pow; import mir.ndslice.slice: sliced; import mir.stat.transform: center; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a.center; KurtosisAccumulator!(double, KurtosisAlgo.assumeZeroMean, Summation.naive) v; v.put(x); assert(v.kurtosis(true, true).approxEqual((792.784119 / 12) / pow(54.765625 / 12, 2.0))); assert(v.kurtosis(true, false).approxEqual((792.784119 / 12) / pow(54.765625 / 12, 2.0) - 3.0)); assert(v.kurtosis(false, false).approxEqual(792.784119 / pow(54.765625 / 11, 2.0) * (12.0 * 13.0) / (11.0 * 10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0))); assert(v.kurtosis(false, true).approxEqual(792.784119 / pow(54.765625 / 11, 2.0) * (12.0 * 13.0) / (11.0 * 10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0) + 3.0)); v.put(4.0); assert(v.kurtosis(true, true).approxEqual((1048.784119 / 13) / pow(70.765625 / 13, 2.0))); assert(v.kurtosis(true, false).approxEqual((1048.784119 / 13) / pow(70.765625 / 13, 2.0) - 3.0)); assert(v.kurtosis(false, false).approxEqual(1048.784119 / pow(70.765625 / 12, 2.0) * (13.0 * 14.0) / (12.0 * 11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0))); assert(v.kurtosis(false, true).approxEqual(1048.784119 / pow(70.765625 / 12, 2.0) * (13.0 * 14.0) / (12.0 * 11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0) + 3.0));
- alias
S
= Summator!(T, summation); - this(Range)(Range
r
)
if (isIterable!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, Summation sumAlgo)(KurtosisAccumulator!(U, kurtosisAlgo, sumAlgo)v
); - @property size_t
count
(); - @property F
mean
(F = T)(); - @property F
variance
(F = T)(boolisPopulation
); - @property F
centeredSumOfQuarts
(F = T)(); - @property F
centeredSumOfCubes
(F = T)(); - @property F
centeredSumOfSquares
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
scaledSumOfQuarts
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
); - F
kurtosis
(F = T)(boolisPopulation
, boolisRaw
);
- struct
KurtosisAccumulator
(T, KurtosisAlgo kurtosisAlgo, Summation summation) if (isMutable!T && (kurtosisAlgo == KurtosisAlgo.hybrid)); - Examples:hybrid
import mir.math.common: approxEqual, pow; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto v = KurtosisAccumulator!(double, KurtosisAlgo.hybrid, Summation.naive)(x); v.kurtosis(true, true).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0); v.kurtosis(true, false).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) - 3; v.kurtosis(false, false).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0); v.kurtosis(false, true).shouldApprox == (792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0) + 3; v.put(4.0); v.kurtosis(true, true).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0); v.kurtosis(true, false).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) - 3; v.kurtosis(false, false).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) * (12.0 * 14.0) / (11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0); v.kurtosis(false, true).shouldApprox == (745.608180 / 13) / pow(57.019231 / 13, 2.0) * (12.0 * 14.0) / (11.0 * 10.0) - 3.0 * (12.0 * 12.0) / (11.0 * 10.0) + 3;
- alias
S
= Summator!(T, summation); - this(Iterator, size_t N, SliceKind kind)(Slice!(Iterator, N, kind)
slice
); - this(SliceLike)(SliceLike
x
)
if (isConvertibleToSlice!SliceLike && !isSlice!SliceLike); - this(Range)(Range
range
)
if (isIterable!Range && !isConvertibleToSlice!Range); - this()(T
x
); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U, KurtosisAlgo kurtAlgo, Summation sumAlgo)(KurtosisAccumulator!(U, kurtAlgo, sumAlgo)v
); - size_t
count
(); - F
centeredSumOfQuarts
(F = T)(); - F
centeredSumOfCubes
(F = T)(); - F
centeredSumOfSquares
(F = T)(); - F
scaledSumOfCubes
(F = T)(boolisPopulation
); - F
scaledSumOfQuarts
(F = T)(boolisPopulation
); - F
mean
(F = T)(); - F
variance
(F = T)(boolisPopulation
); - F
skewness
(F = T)(boolisPopulation
); - F
kurtosis
(F = T)(boolisPopulation
, boolisRaw
);
- template
kurtosis
(F, KurtosisAlgo kurtosisAlgo = KurtosisAlgo.hybrid, Summation summation = Summation.appropriate)
templatekurtosis
(KurtosisAlgo kurtosisAlgo = KurtosisAlgo.hybrid, Summation summation = Summation.appropriate)
templatekurtosis
(F, string kurtosisAlgo, string summation = "appropriate")
templatekurtosis
(string kurtosisAlgo, string summation = "appropriate") - Calculates the kurtosis of the inputBy default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
F controls type of output kurtosisAlgo algorithm for calculating kurtosis (default: KurtosisAlgo.hybrid) summation algorithm for calculating sums (default: Summation.appropriate) Returns:The kurtosis of the input, must be floating pointSee Also:Examples:Simple exampleimport mir.math.common: approxEqual, pow; import mir.ndslice.slice: sliced; assert(kurtosis([1.0, 2, 3, 4]).approxEqual(-1.2)); assert(kurtosis([1.0, 2, 4, 5]).approxEqual((34.0 / 4) / pow(10.0 / 4, 2.0) * (3.0 * 5.0) / (2.0 * 1.0) - 3.0 * (3.0 * 3.0) / (2.0 * 1.0))); // population excess kurtosis assert(kurtosis([1.0, 2, 4, 5], true).approxEqual((34.0 / 4) / pow(10.0 / 4, 2.0) - 3.0)); // sample raw kurtosis assert(kurtosis([1.0, 2, 4, 5], false, true).approxEqual((34.0 / 4) / pow(10.0 / 4, 2.0) * (3.0 * 5.0) / (2.0 * 1.0) - 3.0 * (3.0 * 3.0) / (2.0 * 1.0) + 3.0)); // population raw kurtosis assert(kurtosis([1.0, 2, 4, 5], true, true).approxEqual((34.0 / 4) / pow(10.0 / 4, 2.0))); assert(kurtosis!float([0, 1, 2, 3, 4, 6].sliced(3, 2)).approxEqual(-0.2999999)); static assert(is(typeof(kurtosis!float([1, 2, 3])) == float));
Examples:Kurtosis of vectorimport mir.math.common: approxEqual, pow; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0]; assert(x.kurtosis.approxEqual((792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)));
Examples:Kurtosis of matriximport mir.math.common: approxEqual, pow; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.kurtosis.approxEqual((792.784119 / 12) / pow(54.765625 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)));
Examples:Column kurtosis of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual, pow; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; auto x = [ [0.0, 1.0, 1.5, 2.0], [3.5, 4.25, 2.0, 7.5], [5.0, 1.0, 1.5, 0.0], [1.5, 4.5, 4.75, 0.5] ].fuse; auto result = [-2.067182, -5.918089, 3.504056, 2.690240]; // Use byDim or alongDim with map to compute kurtosis of row/column. assert(x.byDim!1.map!kurtosis.all!approxEqual(result)); assert(x.alongDim!0.map!kurtosis.all!approxEqual(result)); // FIXME // Without using map, computes the kurtosis of the whole slice // assert(x.byDim!1.kurtosis == x.sliced.kurtosis); // assert(x.alongDim!0.kurtosis == x.sliced.kurtosis);
Examples:Can also set algorithm typeimport mir.math.common: approxEqual, pow; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a + 100_000_000_000; // The online algorithm is numerically unstable in this case auto y = x.kurtosis!"online"; assert(!y.approxEqual((792.78411865 / 12) / pow(54.76562500 / 12, 2.0) * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0))); // The naive algorithm has an assert error in this case because standard // deviation is calculated naively as zero. The kurtosis formula would then // be dividing by zero. //auto z0 = x.kurtosis!(real, "naive"); // The two-pass algorithm is also numerically unstable in this case auto z1 = x.kurtosis!"twoPass"; assert(!z1.approxEqual(38.062853 / 12 * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)) + 3.0); assert(!z1.approxEqual(y)); // However, the three-pass algorithm is numerically stable in this case auto z2 = x.kurtosis!"threePass"; assert(z2.approxEqual(38.062853 / 12 * (11.0 * 13.0) / (10.0 * 9.0) - 3.0 * (11.0 * 11.0) / (10.0 * 9.0)) + 3.0); assert(!z2.approxEqual(y)); // And the assumeZeroMean algorithm provides the incorrect answer, as expected auto z3 = x.kurtosis!"assumeZeroMean"; assert(!z3.approxEqual(y));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; // Set population/sample kurtosis, excess/raw kurtosis, kurtosis algorithm, // sum algorithm or output type auto a = [1.0, 1e72, 1, -1e72].sliced; auto x = a * 10_000; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and taking `x` to the fourth power, the first and third numbers in the slice have precision too low to be included in the centered sum of cubes. +/ assert(x.kurtosis.approxEqual(1.5)); assert(x.kurtosis(false).approxEqual(1.5)); assert(x.kurtosis(true).approxEqual(-1.0)); assert(x.kurtosis(true, true).approxEqual(2.0)); assert(x.kurtosis(false, true).approxEqual(4.5)); assert(x.kurtosis!("online").approxEqual(1.5)); assert(x.kurtosis!("online", "kbn").approxEqual(1.5)); assert(x.kurtosis!("online", "kb2").approxEqual(1.5)); assert(x.kurtosis!("online", "precise").approxEqual(1.5)); assert(x.kurtosis!(double, "online", "precise").approxEqual(1.5)); assert(x.kurtosis!(double, "online", "precise")(true).approxEqual(-1.0)); assert(x.kurtosis!(double, "online", "precise")(true, true).approxEqual(2.0)); auto y = [uint.max - 3, uint.max - 2, uint.max - 1, uint.max].sliced; auto z = y.kurtosis!(ulong, "threePass"); assert(z.approxEqual(-1.2)); static assert(is(typeof(z) == double));
Examples:For integral slices, can pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.kurtosis; assert(y.approxEqual(0.223394)); static assert(is(typeof(y) == double)); assert(x.kurtosis!float.approxEqual(0.223394));
Examples:Kurtosis works for other user-defined types (provided they can be converted to a floating point)import mir.math.common: approxEqual; static struct Foo { float x; alias x this; } Foo[] foo = [Foo(1f), Foo(2f), Foo(3f), Foo(4f)]; assert(foo.kurtosis.approxEqual(-1.2f));
Examples:Compute kurtosis along specified dimention of tensorsimport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: as, iota, alongDim, map, repeat; auto x = [ [0.0, 1, 3, 5], [3.0, 4, 5, 7], [6.0, 7, 10, 11], [9.0, 12, 15, 12] ].fuse; assert(x.kurtosis.approxEqual(-0.770040)); auto m0 = [-1.200000, -0.152893, -1.713859, -3.869005]; assert(x.alongDim!0.map!kurtosis.all!approxEqual(m0)); assert(x.alongDim!(-2).map!kurtosis.all!approxEqual(m0)); auto m1 = [-1.699512, 0.342857, -4.339100, 1.500000]; assert(x.alongDim!1.map!kurtosis.all!approxEqual(m1)); assert(x.alongDim!(-1).map!kurtosis.all!approxEqual(m1)); assert(iota(4, 5, 6, 7).as!double.alongDim!0.map!kurtosis.all!approxEqual(repeat(-1.2, 5, 6, 7)));
Examples:Arbitrary kurtosisimport mir.math.common: approxEqual; assert(kurtosis(1.0, 2, 3, 4).approxEqual(-1.2)); assert(kurtosis!float(1, 2, 3, 4).approxEqual(-1.2f));
- stdevType!F
kurtosis
(Range)(Ranger
, boolisPopulation
= false, boolisRaw
= false)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable bool isPopulation
true if population kurtosis, false if sample kurtosis (default) bool isRaw
true if raw kurtosis, false if excess kurtosis (default) - stdevType!F
kurtosis
(scope const F[]ar
...); - Parameters:
F[] ar
values
- struct
EntropyAccumulator
(T, Summation summation); - Examples:test basic functionality
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; EntropyAccumulator!(double, Summation.pairwise) x; x.put([0.1, 0.2, 0.3].sliced); assert(x.entropy.approxEqual(-0.913338)); x.put(0.4); assert(x.entropy.approxEqual(-1.279854));
- Summator!(T, summation)
summator
; - const pure nothrow @nogc @property @safe F
entropy
(F = T)(); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
(U)(EntropyAccumulator!(U, summation)e
);
- template
entropyType
(T) - If T is a floating point type, this is an alias to the unqualified type. If T is not a floating point type, this will alias a double type if T is summable and implicitly convertible to a floating point type.
- template
entropy
(F, Summation summation = Summation.appropriate) - Computes the entropy of the input. By default, if F is not a floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
F controls type of output summation algorithm for summing the individual entropy values (default: Summation.appropriate) Returns:The entropy of all the elements in the input, must be floating point typeSee Also:- entropyType!Range
entropy
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable - entropyType!F
entropy
(scope const F[]ar
...); - Parameters:
F[] ar
values
- template
entropy
(Summation summation = Summation.appropriate)
templateentropy
(F, string summation)
templateentropy
(string summation) - Examples:
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; assert(entropy([0.166667, 0.333333, 0.50]).approxEqual(-1.011404)); assert(entropy!float([0.05, 0.1, 0.15, 0.2, 0.25, 0.25].sliced(3, 2)).approxEqual(-1.679648)); static assert(is(typeof(entropy!float([0.166667, 0.333333, 0.50])) == float));
Examples:Entropy of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; double[] a = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; a[] /= 78.0; auto x = a.sliced; assert(x.entropy.approxEqual(-2.327497));
Examples:Entropy of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; double[] a = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]; a[] /= 78.0; auto x = a.fuse; assert(x.entropy.approxEqual(-2.327497));
Examples:Column entropy of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, map; double[][] a = [ [1.0, 2, 3, 4, 5, 6], [7.0, 8, 9, 10, 11, 12] ]; a[0][] /= 78.0; a[1][] /= 78.0; auto x = a.fuse; auto result = [-0.272209, -0.327503, -0.374483, -0.415678, -0.452350, -0.485273]; // Use byDim or alongDim with map to compute entropy of row/column. assert(x.byDim!1.map!entropy.all!approxEqual(result)); assert(x.alongDim!0.map!entropy.all!approxEqual(result)); // FIXME // Without using map, computes the entropy of the whole slice // assert(x.byDim!1.entropy == x.sliced.entropy); // assert(x.alongDim!0.entropy == x.sliced.entropy);
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; auto a = [1, 1e100, 1, 1e100].sliced; auto x = a * 10_000; assert(x.entropy!"kbn".approxEqual(4.789377e106)); assert(x.entropy!"kb2".approxEqual(4.789377e106)); assert(x.entropy!"precise".approxEqual(4.789377e106)); assert(x.entropy!(double, "precise").approxEqual(4.789377e106));
Examples:For integral slices, pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [3, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 3].sliced; auto y = x.entropy; assert(y.approxEqual(43.509472)); static assert(is(typeof(y) == double)); assert(x.entropy!float.approxEqual(43.509472f));
Examples:Arbitrary entropyimport mir.math.common: approxEqual; assert(entropy(0.25, 0.25, 0.25, 0.25).approxEqual(-1.386294)); assert(entropy!float(0.25, 0.25, 0.25, 0.25).approxEqual(-1.386294));
- entropyType!Range
entropy
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable - entropyType!T
entropy
(T)(scope const T[]ar
...); - Parameters:
T[] ar
values
- template
coefficientOfVariation
(F, VarianceAlgo varianceAlgo = VarianceAlgo.hybrid, Summation summation = Summation.appropriate)
templatecoefficientOfVariation
(VarianceAlgo varianceAlgo = VarianceAlgo.hybrid, Summation summation = Summation.appropriate) - Calculates the coefficient of variation of the input.The coefficient of variation is calculated by dividing either the population or sample (default) standard deviation by the mean of the input. According to wikipedia, "the coefficient of variation should be computed computed for data measured on a ratio scale, that is, scales that have a meaningful zero and hence allow for relative comparison of two measurements." In addition, for "small- and moderately-sized datasets", the coefficient of variation is biased, even when using the sample standard deviation. By default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
F controls type of output varianceAlgo algorithm for calculating variance (default: VarianceAlgo.hybrid) summation algorithm for calculating sums (default: Summation.appropriate) Returns:The coefficient of varition of the input, must be floating point typeSee Also:- stdevType!F
coefficientOfVariation
(Range)(Ranger
, boolisPopulation
= false)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable bool isPopulation
true if population variance, false if sample variance (default) - stdevType!F
coefficientOfVariation
(scope const F[]ar
...); - Parameters:
F[] ar
values
- template
coefficientOfVariation
(F, string varianceAlgo, string summation = "appropriate")
templatecoefficientOfVariation
(string varianceAlgo, string summation = "appropriate") - Examples:
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; assert(coefficientOfVariation([1.0, 2, 3]).approxEqual(1.0 / 2.0)); assert(coefficientOfVariation([1.0, 2, 3], true).approxEqual(0.816497 / 2.0)); assert(coefficientOfVariation!float([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(1.870829 / 2.5)); static assert(is(typeof(coefficientOfVariation!float([1, 2, 3])) == float));
Examples:Coefficient of variation of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.coefficientOfVariation.approxEqual(2.231299 / 2.437500));
Examples:Coefficient of variation of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.coefficientOfVariation.approxEqual(2.231299 / 2.437500));
Examples:Can also set algorithm typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a + 1_000_000_000; auto y = x.coefficientOfVariation; assert(y.approxEqual(2.231299 / 1_000_000_002.437500)); // The naive variance algorithm is numerically unstable in this case, but // the difference is small as coefficientOfVariation is a ratio auto z0 = x.coefficientOfVariation!"naive"; assert(!z0.approxEqual(y, 0x1p-20f, 0x1p-30f)); // But the two-pass algorithm provides a consistent answer auto z1 = x.coefficientOfVariation!"twoPass"; assert(z1.approxEqual(y));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; // Set population standard deviation, standardDeviation algorithm, sum algorithm or output type auto a = [1.0, 1e100, 1, -1e100].sliced; auto x = a * 10_000; bool populationTrue = true; /++ For this case, failing to use a summation algorithm results in an assert error because the mean is zero due to floating point precision issues. +/ //assert(x.coefficientOfVariation!("online").approxEqual(8.164966e103 / 0.0)); /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.coefficientOfVariation!("online", "kbn").approxEqual(8.164966e103 / 5000.0)); assert(x.coefficientOfVariation!("online", "kb2").approxEqual(8.164966e103 / 5000.0)); assert(x.coefficientOfVariation!("online", "precise").approxEqual(8.164966e103 / 5000.0)); assert(x.coefficientOfVariation!(double, "online", "precise").approxEqual(8.164966e103 / 5000.0)); assert(x.coefficientOfVariation!(double, "online", "precise")(populationTrue).approxEqual(7.071068e103 / 5000.0)); auto y = [uint.max - 2, uint.max - 1, uint.max].sliced; auto z = y.coefficientOfVariation!ulong; assert(z == (1.0 / (cast(double) uint.max - 1))); static assert(is(typeof(z) == double)); assert(y.coefficientOfVariation!(ulong, "online") == (1.0 / (cast(double) uint.max - 1)));
Examples:For integral slices, pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.coefficientOfVariation; assert(y.approxEqual(2.151462f / 2.416667)); static assert(is(typeof(y) == double)); assert(x.coefficientOfVariation!float.approxEqual(2.151462f / 2.416667));
Examples:coefficientOfVariation works for other user-defined types (provided they can be converted to a floating point)import mir.math.common: approxEqual; static struct Foo { float x; alias x this; } Foo[] foo = [Foo(1f), Foo(2f), Foo(3f)]; assert(foo.coefficientOfVariation.approxEqual(1f / 2f));
Examples:Arbitrary coefficientOfVariationimport mir.math.common: approxEqual; assert(coefficientOfVariation(1.0, 2, 3).approxEqual(1.0 / 2.0)); assert(coefficientOfVariation!float(1, 2, 3).approxEqual(1f / 2f));
- struct
MomentAccumulator
(T, size_t N, Summation summation) if (N > 0 && isMutable!T); - Examples:Raw moment
import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.stat.transform: center; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a.center; MomentAccumulator!(double, 2, Summation.naive) v; v.put(x); assert(v.moment.approxEqual(54.76562 / 12)); v.put(4.0); assert(v.moment.approxEqual(70.76562 / 13));
Examples:Central momentimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.stat.transform: center; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; MomentAccumulator!(double, 2, Summation.naive) v; auto m = mean(x); v.put(x, m); assert(v.moment.approxEqual(54.76562 / 12));
Examples:Standardized moment with scaled calculationimport mir.math.common: approxEqual, sqrt; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto u = VarianceAccumulator!(double, VarianceAlgo.twoPass, Summation.naive)(x); MomentAccumulator!(double, 3, Summation.naive) v; v.put(x, u.mean, u.variance(true).sqrt); assert(v.moment.approxEqual(12.000999 / 12)); assert(v.count == 12);
- Summator!(T, summation)
summator
; - size_t
count
; - const pure nothrow @nogc @property @safe F
moment
(F = T)(); - const pure nothrow @nogc @property @safe F
sumOfPower
(F = T)(); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
(Range)(Ranger
, Tm
)
if (isIterable!Range); - void
put
(Range)(Ranger
, Tm
, Ts
)
if (isIterable!Range); - void
put
()(Tx
); - void
put
()(MomentAccumulator!(T, N, summation)m
); - this(Range)(Range
r
)
if (isIterable!Range); - this(Range)(Range
r
, Tm
)
if (isIterable!Range); - this(Range)(Range
r
, Tm
, Ts
)
if (isIterable!Range); - this()(T
x
); - this()(T
x
, Tm
); - this()(T
x
, Tm
, Ts
);
- template
rawMoment
(F, size_t N, Summation summation = Summation.appropriate) if (N > 0)
templaterawMoment
(size_t N, Summation summation = Summation.appropriate) if (N > 0)
templaterawMoment
(F, size_t N, string summation) if (N > 0)
templaterawMoment
(size_t N, string summation) if (N > 0) - Calculates the n-th raw moment of the input.By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.Parameters:
F controls type of output N controls n-th raw moment summation algorithm for calculating sums (default: Summation.appropriate) Returns:The n-th raw moment of the input, must be floating point or complex typeExamples:Basic implementationimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; assert(rawMoment!2([1.0, 2, 3]).approxEqual(14.0 / 3)); assert(rawMoment!3([1.0, 2, 3]).approxEqual(36.0 / 3)); assert(rawMoment!(float, 2)([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(55f / 6)); static assert(is(typeof(rawMoment!(float, 2)([1, 2, 3])) == float));
Examples:Raw Moment of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.stat.transform: center; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a.center; assert(x.rawMoment!2.approxEqual(54.76562 / 12));
Examples:Raw Moment of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.stat.transform: center; auto a = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto x = a.center; assert(x.rawMoment!2.approxEqual(54.76562 / 12));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; import mir.stat.transform: center; //Set sum algorithm or output type auto a = [1.0, 1e100, 1, -1e100].sliced; auto b = a * 10_000; auto x = b.center; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.rawMoment!2.approxEqual(2.0e208 / 4)); assert(x.rawMoment!(2, "kbn").approxEqual(2.0e208 / 4)); assert(x.rawMoment!(2, "kb2").approxEqual(2.0e208 / 4)); assert(x.rawMoment!(2, "precise").approxEqual(2.0e208 / 4)); assert(x.rawMoment!(double, 2, "precise").approxEqual(2.0e208 / 4)); auto y = uint.max.repeat(3); auto z = y.rawMoment!(ulong, 2); assert(z.approxEqual(cast(double) (cast(ulong) uint.max) ^^ 2u)); static assert(is(typeof(z) == double));
Examples:rawMoment works for complex numbers and other user-defined types (that are either implicitly convertible to floating point or if isComplex is true)import mir.ndslice.slice: sliced; import std.complex: Complex; import std.math.operations: isClose; auto x = [Complex!double(1, 2), Complex!double(2, 3), Complex!double(3, 4), Complex!double(4, 5)].sliced; assert(x.rawMoment!2.isClose(Complex!double(-24, 80)/ 4));
Examples:Arbitrary raw momentimport mir.math.common: approxEqual; assert(rawMoment!2(1.0, 2, 3).approxEqual(14.0 / 3)); assert(rawMoment!(float, 2)(1, 2, 3).approxEqual(14f / 3));
- meanType!F
rawMoment
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable - meanType!F
rawMoment
(scope const F[]ar
...); - Parameters:
F[] ar
values
- template
centralMoment
(F, size_t N, Summation summation = Summation.appropriate) if (N > 0)
templatecentralMoment
(size_t N, Summation summation = Summation.appropriate) if (N > 0)
templatecentralMoment
(F, size_t N, string summation) if (N > 0)
templatecentralMoment
(size_t N, string summation) if (N > 0) - Calculates the n-th central moment of the input.By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.Parameters:
F controls type of output N controls n-th central moment summation algorithm for calculating sums (default: Summation.appropriate) Returns:The n-th central moment of the input, must be floating point or complex typeExamples:Basic implementationimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; assert(centralMoment!2([1.0, 2, 3]).approxEqual(2.0 / 3)); assert(centralMoment!3([1.0, 2, 3]).approxEqual(0.0 / 3)); assert(centralMoment!(float, 2)([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(17.5f / 6)); static assert(is(typeof(centralMoment!(float, 2)([1, 2, 3])) == float));
Examples:Central Moment of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.centralMoment!2.approxEqual(54.76562 / 12));
Examples:Central Moment of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.centralMoment!2.approxEqual(54.76562 / 12));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat; import mir.stat.transform: center; //Set sum algorithm or output type auto a = [1.0, 1e100, 1, -1e100].sliced; auto b = a * 10_000; auto x = b.center; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.centralMoment!2.approxEqual(2.0e208 / 4)); assert(x.centralMoment!(2, "kbn").approxEqual(2.0e208 / 4)); assert(x.centralMoment!(2, "kb2").approxEqual(2.0e208 / 4)); assert(x.centralMoment!(2, "precise").approxEqual(2.0e208 / 4)); assert(x.centralMoment!(double, 2, "precise").approxEqual(2.0e208 / 4)); auto y = uint.max.repeat(3); auto z = y.centralMoment!(ulong, 2); assert(z.approxEqual(0.0)); static assert(is(typeof(z) == double));
Examples:centralMoment works for complex numbers and other user-defined types (that are either implicitly convertible to floating point or if isComplex is true)import mir.ndslice.slice: sliced; import std.complex: Complex; import std.math.operations: isClose; auto x = [Complex!double(1, 2), Complex!double(2, 3), Complex!double(3, 4), Complex!double(4, 5)].sliced; assert(x.centralMoment!2.isClose(Complex!double(0, 10) / 4));
Examples:Arbitrary central momentimport mir.math.common: approxEqual; assert(centralMoment!2(1.0, 2, 3).approxEqual(2.0 / 3)); assert(centralMoment!(float, 2)(1, 2, 3).approxEqual(2f / 3));
- meanType!F
centralMoment
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable - meanType!F
centralMoment
(scope const F[]ar
...); - Parameters:
F[] ar
values
- enum
StandardizedMomentAlgo
: int; -
scaled
- Calculates n-th standardized moment as E(((x - u) / sigma) ^^ N)
centered
- Calculates n-th standardized moment as E(((x - u) ^^ N) / ((x - u) ^^ (N / 2)))
- template
standardizedMoment
(F, size_t N, StandardizedMomentAlgo standardizedMomentAlgo = StandardizedMomentAlgo.scaled, VarianceAlgo varianceAlgo = VarianceAlgo.twoPass, Summation summation = Summation.appropriate) if (N > 0)
templatestandardizedMoment
(size_t N, StandardizedMomentAlgo standardizedMomentAlgo = StandardizedMomentAlgo.scaled, VarianceAlgo varianceAlgo = VarianceAlgo.twoPass, Summation summation = Summation.appropriate) if (N > 0)
templatestandardizedMoment
(F, size_t N, string standardizedMomentAlgo, string varianceAlgo = "twoPass", string summation = "appropriate") if (N > 0)
templatestandardizedMoment
(size_t N, string standardizedMomentAlgo, string varianceAlgo = "twoPass", string summation = "appropriate") if (N > 0) - Calculates the n-th standardized moment of the input.By default, if F is not floating point type, then the result will have a double type if F is implicitly convertible to a floating point type.Parameters:
F controls type of output N controls n-th standardized moment summation algorithm for calculating sums (default: Summation.appropriate) Returns:The n-th standardized moment of the input, must be floating pointExamples:Basic implementationimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; assert(standardizedMoment!1([1.0, 2, 3]).approxEqual(0.0)); assert(standardizedMoment!2([1.0, 2, 3]).approxEqual(1.0)); assert(standardizedMoment!3([1.0, 2, 3]).approxEqual(0.0 / 3)); assert(standardizedMoment!4([1.0, 2, 3]).approxEqual(4.5 / 3)); assert(standardizedMoment!(float, 2)([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(6f / 6)); static assert(is(typeof(standardizedMoment!(float, 2)([1, 2, 3])) == float));
Examples:Standardized Moment of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.standardizedMoment!3.approxEqual(12.000999 / 12));
Examples:Standardized Moment of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.standardizedMoment!3.approxEqual(12.000999 / 12));
Examples:Can also set algorithm typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto a = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto x = a + 100_000_000_000; // The default algorithm is numerically stable in this case auto y = x.standardizedMoment!3; assert(y.approxEqual(12.000999 / 12)); // The online algorithm is numerically unstable in this case auto z1 = x.standardizedMoment!(3, "scaled", "online"); assert(!z1.approxEqual(12.000999 / 12)); assert(!z1.approxEqual(y)); // It is also numerically unstable when using StandardizedMomentAlgo.centered auto z2 = x.standardizedMoment!(3, "centered", "online"); assert(!z2.approxEqual(12.000999 / 12)); assert(!z2.approxEqual(y));
Examples:Can also set algorithm or output typeimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; //Set standardized moment algorithm, variance algorithm, sum algorithm, or output type auto a = [1.0, 1e98, 1, -1e98].sliced; auto x = a * 10_000; /++ Due to Floating Point precision, when centering `x`, subtracting the mean from the second and fourth numbers has no effect. Further, after centering and squaring `x`, the first and third numbers in the slice have precision too low to be included in the centered sum of squares. +/ assert(x.standardizedMoment!3.approxEqual(0.0)); assert(x.standardizedMoment!(3, "scaled", "online").approxEqual(0.0)); assert(x.standardizedMoment!(3, "centered", "online").approxEqual(0.0)); assert(x.standardizedMoment!(3, "scaled", "online", "kbn").approxEqual(0.0)); assert(x.standardizedMoment!(3, "scaled", "online", "kb2").approxEqual(0.0)); assert(x.standardizedMoment!(3, "scaled", "online", "precise").approxEqual(0.0)); assert(x.standardizedMoment!(double, 3, "scaled", "online", "precise").approxEqual(0.0)); auto y = [uint.max - 2, uint.max - 1, uint.max].sliced; auto z = y.standardizedMoment!(ulong, 3); assert(z == 0.0); static assert(is(typeof(z) == double));
Examples:For integral slices, can pass output type as template parameter to ensure output type is correct. By default, they get converted to double.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.standardizedMoment!3; assert(y.approxEqual(9.666455 / 12)); static assert(is(typeof(y) == double)); assert(x.standardizedMoment!(float, 3).approxEqual(9.666455f / 12));
Examples:Arbitrary standardized momentimport mir.math.common: approxEqual; assert(standardizedMoment!3(1.0, 2, 3).approxEqual(0.0 / 3)); assert(standardizedMoment!(float, 3)(1, 2, 3).approxEqual(0f / 3)); assert(standardizedMoment!(float, 3, "centered")(1, 2, 3).approxEqual(0f / 3));
- stdevType!F
standardizedMoment
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable - stdevType!F
standardizedMoment
(scope const F[]ar
...); - Parameters:
F[] ar
values
- enum
MomentAlgo
: int; -
raw
- nth raw moment, E(x ^^ n)
central
- nth central moment, E((x - u) ^^ n)
standardized
- nth standardized moment, E(((x - u) / sigma) ^^ n)
- template
moment
(F, size_t N, MomentAlgo momentAlgo, Summation summation = Summation.appropriate)
templatemoment
(size_t N, MomentAlgo momentAlgo, Summation summation = Summation.appropriate)
templatemoment
(F, size_t N, string momentAlgo, string summation = "appropriate")
templatemoment
(size_t N, string momentAlgo, string summation = "appropriate") - Calculates the n-th moment of the input.Parameters:
F controls type of output N controls n-th standardized moment momentAlgo type of moment to be calculated summation algorithm for calculating sums (default: Summation.appropriate) Returns:The n-th moment of the input, must be floating point or complex typeExamples:Basic implementationimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; assert(moment!(1, "raw")([1.0, 2, 3]).approxEqual(6.0 / 3)); assert(moment!(2, "raw")([1.0, 2, 3]).approxEqual(14.0 / 3)); assert(moment!(3, "raw")([1.0, 2, 3]).approxEqual(36.0 / 3)); assert(moment!(4, "raw")([1.0, 2, 3]).approxEqual(98.0 / 3)); assert(moment!(1, "central")([1.0, 2, 3]).approxEqual(0.0 / 3)); assert(moment!(2, "central")([1.0, 2, 3]).approxEqual(2.0 / 3)); assert(moment!(3, "central")([1.0, 2, 3]).approxEqual(0.0 / 3)); assert(moment!(4, "central")([1.0, 2, 3]).approxEqual(2.0 / 3)); assert(moment!(1, "standardized")([1.0, 2, 3]).approxEqual(0.0)); assert(moment!(2, "standardized")([1.0, 2, 3]).approxEqual(1.0)); assert(moment!(3, "standardized")([1.0, 2, 3]).approxEqual(0.0 / 3)); assert(moment!(4, "standardized")([1.0, 2, 3]).approxEqual(4.5 / 3)); assert(moment!(float, 2, "standardized")([0, 1, 2, 3, 4, 5].sliced(3, 2)).approxEqual(6f / 6)); static assert(is(typeof(moment!(float, 2, "standardized")([1, 2, 3])) == float));
Examples:Standardized Moment of vectorimport mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; assert(x.moment!(3, "standardized").approxEqual(12.000999 / 12));
Examples:Standardized Moment of matriximport mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; assert(x.moment!(3, "standardized").approxEqual(12.000999 / 12));
Examples:For integral slices, can pass output type as template parameter to ensure output type is correct. By default, they get converted to double.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto y = x.moment!(3, "standardized"); assert(y.approxEqual(9.666455 / 12)); static assert(is(typeof(y) == double)); assert(x.moment!(float, 3, "standardized").approxEqual(9.666455f / 12));
Examples:Arbitrary standardized momentimport mir.math.common: approxEqual; assert(moment!(3, "standardized")(1.0, 2, 3).approxEqual(0.0 / 3)); assert(moment!(float, 3, "standardized")(1, 2, 3).approxEqual(0f / 3));
- meanType!F
moment
(Range)(Ranger
)
if (isIterable!Range && (momentAlgo != MomentAlgo.standardized)); - Parameters:
Range r
range, must be finite iterable - stdevType!F
moment
(Range)(Ranger
)
if (isIterable!Range && (momentAlgo == MomentAlgo.standardized)); - Parameters:
Range r
range, must be finite iterable - meanType!F
moment
()(scope const F[]ar
...)
if (momentAlgo != MomentAlgo.standardized); - Parameters:
F[] ar
values - stdevType!F
moment
()(scope const F[]ar
...)
if (momentAlgo == MomentAlgo.standardized); - Parameters:
F[] ar
values
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:04 2023