Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.distribution.beta
This module contains algorithms for the Beta Distribution.
An alternate parameterization of this distribution is provided in mir.stat.distribution.beta_proportion.
License:
Authors:
John Michael Hall
- pure nothrow @nogc @safe T
betaPDF
(T)(const Tx
, const Talpha
, const Tbeta
)
if (isFloatingPoint!T); - Computes the beta probability density function (PDF).Parameters:
T x
value to evaluate PDF T alpha
shape parameter #1 T beta
shape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaPDF(1, 1) == 1); assert(0.75.betaPDF(1, 2).approxEqual(0.5)); assert(0.25.betaPDF(0.5, 4).approxEqual(0.9228516));
- pure nothrow @nogc @safe T
betaCDF
(T)(const Tx
, const Talpha
, const Tbeta
)
if (isFloatingPoint!T); - Computes the beta cumulatve distribution function (CDF).Parameters:
T x
value to evaluate CDF T alpha
shape parameter #1 T beta
shape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaCDF(1, 1).approxEqual(0.5)); assert(0.75.betaCDF(1, 2).approxEqual(0.9375)); assert(0.25.betaCDF(0.5, 4).approxEqual(0.8588867));
- pure nothrow @nogc @safe T
betaCCDF
(T)(const Tx
, const Talpha
, const Tbeta
)
if (isFloatingPoint!T); - Computes the beta complementary cumulative distribution function (CCDF).Parameters:
T x
value to evaluate CCDF T alpha
shape parameter #1 T beta
shape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaCCDF(1, 1).approxEqual(0.5)); assert(0.75.betaCCDF(1, 2).approxEqual(0.0625)); assert(0.25.betaCCDF(0.5, 4).approxEqual(0.1411133));
- pure nothrow @nogc @safe T
betaInvCDF
(T)(const Tp
, const Talpha
, const Tbeta
)
if (isFloatingPoint!T); - Computes the beta inverse cumulative distribution function (InvCDF).Parameters:
T p
value to evaluate InvCDF T alpha
shape parameter #1 T beta
shape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaInvCDF(1, 1).approxEqual(0.5)); assert(0.9375.betaInvCDF(1, 2).approxEqual(0.75)); assert(0.8588867.betaInvCDF(0.5, 4).approxEqual(0.25));
- pure nothrow @nogc @safe T
betaLPDF
(T)(const Tx
, const Talpha
, const Tbeta
)
if (isFloatingPoint!T); - Computes the beta log probability density function (LPDF).Parameters:
T x
value to evaluate LPDF T alpha
shape parameter #1 T beta
shape parameter #2 See Also:Examples:import mir.math.common: approxEqual, log; assert(0.5.betaLPDF(1, 1).approxEqual(log(betaPDF(0.5, 1, 1)))); assert(0.75.betaLPDF(1, 2).approxEqual(log(betaPDF(0.75, 1, 2)))); assert(0.25.betaLPDF(0.5, 4).approxEqual(log(betaPDF(0.25, 0.5, 4))));
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:05 2023