Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.distribution.chi2
This module contains algorithms for the Chi-squared Distribution.
License:
Authors:
Ilia Ki, John Michael Hall
- pure nothrow @nogc @safe T
chi2PDF
(T)(const Tx
, const uintk
)
if (isFloatingPoint!T); - Computes the Chi-squared probability density function (PDF).Parameters:
T x
value to evaluate PDF uint k
degrees of freedom See Also:Examples:import mir.test: shouldApprox; 0.2.chi2PDF(2).shouldApprox == 0.4524187;
- pure nothrow @nogc @safe T
chi2CDF
(T)(const Tx
, const uintk
)
if (isFloatingPoint!T); - Computes the Chi-squared cumulative distribution function (CDF).Parameters:
T x
value to evaluate CDF uint k
degrees of freedom See Also:Examples:import mir.test: shouldApprox; 0.2.chi2CDF(2).shouldApprox == 0.09516258;
- pure nothrow @nogc @safe T
chi2CCDF
(T)(const Tx
, const uintk
)
if (isFloatingPoint!T); - Computes the Chi-squared complementary cumulative distribution function (CCDF).Parameters:
T x
value to evaluate CCDF uint k
degrees of freedom See Also:Examples:import mir.test: shouldApprox; 0.2.chi2CCDF(2).shouldApprox == 0.9048374;
- pure nothrow @nogc @safe T
chi2InvCDF
(T)(const Tp
, const uintk
)
if (isFloatingPoint!T); - Computes the Chi-squared inverse cumulative distribution function (InvCDF).Parameters:
T p
value to evaluate InvCDF uint k
degrees of freedom See Also:Examples:import mir.test: shouldApprox; 0.09516258.chi2InvCDF(2).shouldApprox == 0.2;
- pure nothrow @nogc @safe T
chi2LPDF
(T)(const Tx
, const uintk
)
if (isFloatingPoint!T); - Computes the Chi-squared probability density function (LPDF).Parameters:
T x
value to evaluate LPDF uint k
degrees of freedom See Also:Examples:import mir.test: shouldApprox; 0.2.chi2LPDF(2).shouldApprox == -0.7931472;
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:05 2023