Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.distribution.beta_proportion
This module contains algorithms for the Beta Proportion Distribution.
An alternate parameterization of the mir.stat.distribution.beta distribuion in terms of
the mean of the distribution and the sum of its shape parameters (also known as the sample
size of the Beta distribution).
License:
Authors:
John Michael Hall
- pure nothrow @nogc @safe T
betaProportionPDF(T)(const Tx, const Tmu, const Tkappa)
if (isFloatingPoint!T); - Computes the beta proportion probability density function (PDF).Parameters:
T xvalue to evaluate PDF T mushape parameter #1 T kappashape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaProportionPDF(0.5, 2) == 1); assert(0.75.betaProportionPDF((1.0 / 3), 3).approxEqual(0.5)); assert(0.25.betaProportionPDF((1.0 / 9), 4.5).approxEqual(0.9228516));
- pure nothrow @nogc @safe T
betaProportionCDF(T)(const Tx, const Tmu, const Tkappa)
if (isFloatingPoint!T); - Computes the beta proportion cumulatve distribution function (CDF).Parameters:
T xvalue to evaluate CDF T mushape parameter #1 T kappashape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaProportionCDF(0.5, 2).approxEqual(0.5)); assert(0.75.betaProportionCDF((1.0 / 3), 3).approxEqual(0.9375)); assert(0.25.betaProportionCDF((1.0 / 9), 4.5).approxEqual(0.8588867));
- pure nothrow @nogc @safe T
betaProportionCCDF(T)(const Tx, const Tmu, const Tkappa)
if (isFloatingPoint!T); - Computes the beta proportion complementary cumulative distribution function (CCDF).Parameters:
T xvalue to evaluate CCDF T mushape parameter #1 T kappashape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaProportionCCDF(0.5, 2).approxEqual(0.5)); assert(0.75.betaProportionCCDF((1.0 / 3), 3).approxEqual(0.0625)); assert(0.25.betaProportionCCDF((1.0 / 9), 4.5).approxEqual(0.1411133));
- pure nothrow @nogc @safe T
betaProportionInvCDF(T)(const Tp, const Tmu, const Tkappa)
if (isFloatingPoint!T); - Computes the beta proportion inverse cumulative distribution function (InvCDF).Parameters:
T pvalue to evaluate InvCDF T mushape parameter #1 T kappashape parameter #2 See Also:Examples:import mir.math.common: approxEqual; assert(0.5.betaProportionInvCDF(0.5, 2).approxEqual(0.5)); assert(0.9375.betaProportionInvCDF((1.0 / 3), 3).approxEqual(0.75)); assert(0.8588867.betaProportionInvCDF((1.0 / 9), 4.5).approxEqual(0.25));
- pure nothrow @nogc @safe T
betaProportionLPDF(T)(const Tx, const Tmu, const Tkappa)
if (isFloatingPoint!T); - Computes the beta proportion log probability density function (LPDF).Parameters:
T xvalue to evaluate LPDF T mushape parameter #1 T kappashape parameter #2 See Also:Examples:import mir.math.common: approxEqual, log; assert(0.5.betaProportionLPDF(0.5, 2).approxEqual(log(betaProportionPDF(0.5, 0.5, 2)))); assert(0.75.betaProportionLPDF((1.0 / 3), 3).approxEqual(log(betaProportionPDF(0.75, (1.0 / 3), 3)))); assert(0.25.betaProportionLPDF((1.0 / 9), 4.5).approxEqual(log(betaProportionPDF(0.25, (1.0 / 9), 4.5))));
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:05 2023