Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.distribution.generalized_pareto
This module contains algorithms for the Generalized Pareto Distribution.
License:
Authors:
John Michael Hall
- pure nothrow @nogc @safe T
generalizedParetoPDF
(T)(const Tx
, const Tmu
, const Tsigma
, const Txi
)
if (isFloatingPoint!T); - Computes the generalized pareto probability density function (PDF).Parameters:
T x
value to evaluate PDF T mu
location parameter T sigma
scale parameter T xi
shape parameter See Also:Examples:import mir.test: shouldApprox; 1.0.generalizedParetoPDF(1, 1, 0.5).shouldApprox == 1; 2.0.generalizedParetoPDF(1, 1, 0.5).shouldApprox == 0.2962963; 3.0.generalizedParetoPDF(2, 3, 0.25).shouldApprox == 0.2233923; 5.0.generalizedParetoPDF(2, 3, 0).shouldApprox == 0.3678794;
- pure nothrow @nogc @safe T
generalizedParetoCDF
(T)(const Tx
, const Tmu
, const Tsigma
, const Txi
)
if (isFloatingPoint!T); - Computes the generalized pareto cumulative distribution function (CDF).Parameters:
T x
value to evaluate CDF T mu
location parameter T sigma
scale parameter T xi
shape parameter See Also:Examples:import mir.test: shouldApprox; 1.0.generalizedParetoCDF(1, 1, 0.5).shouldApprox == 0; 2.0.generalizedParetoCDF(1, 1, 0.5).shouldApprox == 0.5555556; 3.0.generalizedParetoCDF(2, 3, 0.25).shouldApprox == 0.273975; 5.0.generalizedParetoCDF(2, 3, 0).shouldApprox == 0.6321206;
- pure nothrow @nogc @safe T
generalizedParetoCCDF
(T)(const Tx
, const Tmu
, const Tsigma
, const Txi
)
if (isFloatingPoint!T); - Computes the generalized pareto complementary cumulative distribution function (CCDF).Parameters:
T x
value to evaluate CCDF T mu
location parameter T sigma
scale parameter T xi
shape parameter See Also:Examples:import mir.test: shouldApprox; 1.0.generalizedParetoCCDF(1, 1, 0.5).shouldApprox == 1; 2.0.generalizedParetoCCDF(1, 1, 0.5).shouldApprox == 0.4444444; 3.0.generalizedParetoCCDF(2, 3, 0.25).shouldApprox == 0.726025; 5.0.generalizedParetoCCDF(2, 3, 0).shouldApprox == 0.3678794;
- pure nothrow @nogc @safe T
generalizedParetoInvCDF
(T)(const Tp
, const Tmu
, const Tsigma
, const Txi
)
if (isFloatingPoint!T); - Computes the generalized pareto inverse cumulative distribution function (InvCDF).Parameters:
T p
value to evaluate InvCDF T mu
location parameter T sigma
scale parameter T xi
shape parameter See Also:Examples:import mir.test: shouldApprox; 0.0.generalizedParetoInvCDF(1, 1, 0.5).shouldApprox == 1; 0.5555556.generalizedParetoInvCDF(1, 1, 0.5).shouldApprox == 2; 0.273975.generalizedParetoInvCDF(2, 3, 0.25).shouldApprox == 3; 0.6321206.generalizedParetoInvCDF(2, 3, 0).shouldApprox == 5;
- pure nothrow @nogc @safe T
generalizedParetoLPDF
(T)(const Tx
, const Tmu
, const Tsigma
, const Txi
)
if (isFloatingPoint!T); - Computes the generalized pareto log probability density function (LPDF).Parameters:
T x
value to evaluate LPDF T mu
location parameter T sigma
scale parameter T xi
shape parameter See Also:Examples:import mir.math.common: log; import mir.test: shouldApprox; 1.0.generalizedParetoLPDF(1, 1, 0.5).shouldApprox == log(generalizedParetoPDF(1.0, 1, 1, 0.5)); 2.0.generalizedParetoLPDF(1, 1, 0.5).shouldApprox == log(generalizedParetoPDF(2.0, 1, 1, 0.5)); 3.0.generalizedParetoLPDF(2, 3, 0.25).shouldApprox == log(generalizedParetoPDF(3.0, 2, 3, 0.25)); 5.0.generalizedParetoLPDF(2, 3, 0).shouldApprox == log(generalizedParetoPDF(5.0, 2, 3, 0));
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:06 2023