Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.distribution.weibull
This module contains algorithms for the Weibull Distribution.
License:
Authors:
John Michael Hall
- pure nothrow @nogc @safe T
weibullPDF
(T)(const Tx
, const Tshape
, const Tscale
= 1)
if (isFloatingPoint!T); - Computes the Weibull probability density function (PDF).Parameters:
T x
value to evaluate PDF T shape
shape parameter T scale
scale parameter See Also:Examples:import mir.test: shouldApprox; 0.0.weibullPDF(3.0).shouldApprox == 0; 0.5.weibullPDF(3.0).shouldApprox == 0.6618727; 1.0.weibullPDF(3.0).shouldApprox == 1.103638; 1.5.weibullPDF(3.0).shouldApprox == 0.2309723; // Can also provide scale parameter 0.5.weibullPDF(2.0, 3.0).shouldApprox == 0.1080672; 1.0.weibullPDF(2.0, 3.0).shouldApprox == 0.1988532; 1.5.weibullPDF(2.0, 3.0).shouldApprox == 0.2596003;
- pure nothrow @nogc @safe T
weibullCDF
(T)(const Tx
, const Tshape
, const Tscale
= 1)
if (isFloatingPoint!T); - Computes the Weibull cumulative distribution function (CDF).Parameters:
T x
value to evaluate CDF T shape
shape parameter T scale
scale parameter See Also:Examples:import mir.test: shouldApprox; 0.0.weibullCDF(3.0).shouldApprox == 0; 0.5.weibullCDF(3.0).shouldApprox == 0.1175031; 1.0.weibullCDF(3.0).shouldApprox == 0.6321206; 1.5.weibullCDF(3.0).shouldApprox == 0.9657819; // Can also provide scale parameter 0.5.weibullCDF(2.0, 3.0).shouldApprox == 0.02739552; 1.0.weibullCDF(2.0, 3.0).shouldApprox == 0.1051607; 1.5.weibullCDF(2.0, 3.0).shouldApprox == 0.2211992;
- pure nothrow @nogc @safe T
weibullCCDF
(T)(const Tx
, const Tshape
, const Tscale
= 1)
if (isFloatingPoint!T); - Computes the Weibull complementary cumulative distribution function (CCDF).Parameters:
T x
value to evaluate CCDF T shape
shape parameter T scale
scale parameter See Also:Examples:import mir.test: shouldApprox; 0.0.weibullCCDF(3.0).shouldApprox == 1; 0.5.weibullCCDF(3.0).shouldApprox == 0.8824969; 1.0.weibullCCDF(3.0).shouldApprox == 0.3678794; 1.5.weibullCCDF(3.0).shouldApprox == 0.03421812; // Can also provide scale parameter 0.5.weibullCCDF(2.0, 3.0).shouldApprox == 0.9726045; 1.0.weibullCCDF(2.0, 3.0).shouldApprox == 0.8948393; 1.5.weibullCCDF(2.0, 3.0).shouldApprox == 0.7788008;
- pure nothrow @nogc @safe T
weibullInvCDF
(T)(const Tp
, const Tshape
, const Tscale
= 1)
if (isFloatingPoint!T); - Computes the Weibull inverse cumulative distribution function (InvCDF).Parameters:
T p
value to evaluate InvCDF T shape
shape parameter T scale
scale parameter See Also:Examples:import mir.test: shouldApprox; weibullInvCDF(0.0, 3).shouldApprox == 0.0; weibullInvCDF(0.25, 3).shouldApprox == 0.6601424; weibullInvCDF(0.5, 3).shouldApprox == 0.884997; weibullInvCDF(0.75, 3).shouldApprox == 1.115026; weibullInvCDF(1.0, 3).shouldApprox == double.infinity; // Can also provide scale parameter weibullInvCDF(0.2, 2, 3).shouldApprox == 1.417142; weibullInvCDF(0.4, 2, 3).shouldApprox == 2.144162; weibullInvCDF(0.6, 2, 3).shouldApprox == 2.871692; weibullInvCDF(0.8, 2, 3).shouldApprox == 3.805909;
- pure nothrow @nogc @safe T
weibullLPDF
(T)(const Tx
, const Tshape
, const Tscale
= 1)
if (isFloatingPoint!T); - Computes the Weibull log probability density function (LPDF).Parameters:
T x
value to evaluate LPDF T shape
shape parameter T scale
scale parameter See Also:Examples:import mir.math.common: log; import mir.test: shouldApprox; 0.0.weibullLPDF(3.0).shouldApprox == log(0.0); 0.5.weibullLPDF(3.0).shouldApprox == log(0.6618727); 1.0.weibullLPDF(3.0).shouldApprox == log(1.103638); 1.5.weibullLPDF(3.0).shouldApprox == log(0.2309723); // Can also provide scale parameter 0.5.weibullLPDF(2.0, 3.0).shouldApprox == log(0.1080672); 1.0.weibullLPDF(2.0, 3.0).shouldApprox == log(0.1988532); 1.5.weibullLPDF(2.0, 3.0).shouldApprox == log(0.2596003);
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:06 2023