Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.descriptive.weighted
This module contains algorithms for descriptive statistics with weights.
License:
Authors:
John Michael Hall
- enum
AssumeWeights
: bool; - Assumptions used for weighted moments
primary
- Primary, does not assume weights sum to one
sumToOne
- Assumes weights sum to one
- struct
WMeanAccumulator
(T, Summation summation, AssumeWeights assumeWeights, U = T, Summation weightsSummation = summation); - Output range for wmean.Examples:Assume weights sum to 1
import mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.test: should; WMeanAccumulator!(double, Summation.pairwise, AssumeWeights.sumToOne) x; x.put([0.0, 1, 2, 3, 4].sliced, [0.2, 0.2, 0.2, 0.2, 0.2].sliced); x.wmean.should == 2; x.put(5, 0.0); x.wmean.should == 2;
Examples:Do not assume weights sum to 1import mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; WMeanAccumulator!(double, Summation.pairwise, AssumeWeights.primary) x; x.put([0.0, 1, 2, 3, 4].sliced, [1, 2, 3, 4, 5].sliced); x.wmean.shouldApprox == 40.0 / 15; x.put(5, 6); x.wmean.shouldApprox == 70.0 / 21;
Examples:Assume no weights, like MeanAccumulatorimport mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; WMeanAccumulator!(double, Summation.pairwise, AssumeWeights.primary) x; x.put([0.0, 1, 2, 3, 4].sliced); x.wmean.shouldApprox == 2; x.put(5); x.wmean.shouldApprox == 2.5;
- Summator!(T, summation)
wsummator
; - Summator!(U, weightsSummation)
weights
; - const pure nothrow @nogc @property @safe F
wmean
(F = T)(); - const pure nothrow @nogc @property @safe F
wsum
(F = T)(); - const pure nothrow @nogc @property @safe F
weight
(F = U)(); - void
put
(Slice1, Slice2)(Slice1s
, Slice2w
)
if (isSlice!Slice1 && isSlice!Slice2); - void
put
(SliceLike1, SliceLike2)(SliceLike1s
, SliceLike2w
)
if (isConvertibleToSlice!SliceLike1 && !isSlice!SliceLike1 && isConvertibleToSlice!SliceLike2 && !isSlice!SliceLike2); - void
put
(Range)(Ranger
)
if (isIterable!Range && !assumeWeights); - void
put
(RangeA, RangeB)(RangeAr
, RangeBw
)
if (isInputRange!RangeA && !isConvertibleToSlice!RangeA && isInputRange!RangeB && !isConvertibleToSlice!RangeB); - void
put
()(Tx
, Uw
); - void
put
()(Tx
)
if (!assumeWeights); - void
put
(F = T, G = U)(WMeanAccumulator!(F, summation, assumeWeights, G, weightsSummation)wm
)
if (!assumeWeights);
- template
wmean
(F, Summation summation = Summation.appropriate, AssumeWeights assumeWeights = AssumeWeights.primary, G = F, Summation weightsSummation = Summation.appropriate) if (!is(F : AssumeWeights))
templatewmean
(Summation summation = Summation.appropriate, AssumeWeights assumeWeights = AssumeWeights.primary, Summation weightsSummation = Summation.appropriate)
templatewmean
(F, AssumeWeights assumeWeights, Summation summation = Summation.appropriate, G = F, Summation weightsSummation = Summation.appropriate) if (!is(F : AssumeWeights))
templatewmean
(F, bool assumeWeights, string summation = "appropriate", G = F, string weightsSummation = "appropriate") if (!is(F : AssumeWeights))
templatewmean
(bool assumeWeights, string summation = "appropriate", string weightsSummation = "appropriate")
templatewmean
(F, string summation, bool assumeWeights = false, G = F, string weightsSummation = "appropriate") if (!is(F : AssumeWeights))
templatewmean
(string summation, bool assumeWeights = false, string weightsSummation = "appropriate")
templatewmean
(F, string summation, G, string weightsSummation, bool assumeWeights) if (!is(F : AssumeWeights))
templatewmean
(string summation, string weightsSummation, bool assumeWeights = false) - Computes the weighted mean of the input.By default, if F is not floating point type or complex type, then the result will have a double type if F is implicitly convertible to a floating point type or a type for which isComplex!F is true.Parameters:
F controls type of output summation algorithm for calculating sums (default: Summation.appropriate) assumeWeights true if weights are assumed to add to 1 (default = AssumeWeights.primary) G controls the type of weights Returns:The weighted mean of all the elements in the input, must be floating point or complex typeExamples:import mir.complex; import mir.ndslice.slice: sliced; import mir.test: should, shouldApprox; alias C = Complex!double; wmean([1.0, 2, 3], [1, 2, 3]).shouldApprox == (1.0 + 4.0 + 9.0) / 6; wmean!true([1.0, 2, 3], [1.0 / 6, 2.0 / 6, 3.0 / 6]).shouldApprox == (1.0 + 4.0 + 9.0) / 6; wmean([C(1, 3), C(2), C(3)], [1, 2, 3]).should == C(14.0 / 6, 3.0 / 6); wmean!float([0, 1, 2, 3, 4, 5].sliced(3, 2), [1, 2, 3, 4, 5, 6].sliced(3, 2)).shouldApprox == 70.0 / 21; static assert(is(typeof(wmean!float([1, 2, 3], [1, 2, 3])) == float));
Examples:If weights are not provided, then behaves like meanimport mir.complex; import mir.ndslice.slice: sliced; import mir.test: should; alias C = Complex!double; wmean([1.0, 2, 3]).should == 2; wmean([C(1, 3), C(2), C(3)]).should == C(2, 1); wmean!float([0, 1, 2, 3, 4, 5].sliced(3, 2)).should == 2.5; static assert(is(typeof(wmean!float([1, 2, 3])) == float));
Examples:Weighted mean of vectorimport mir.ndslice.slice: sliced; import mir.ndslice.topology: iota, map; import mir.test: shouldApprox; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto w = iota([12], 1); auto w_SumToOne = w.map!(a => a / 78.0); x.wmean.shouldApprox == 29.25 / 12; x.wmean(w).shouldApprox == 203.0 / 78; x.wmean!true(w_SumToOne).shouldApprox == 203.0 / 78;
Examples:Weighted mean of matriximport mir.ndslice.fuse: fuse; import mir.ndslice.topology: iota, map; import mir.test: shouldApprox; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto w = iota([2, 6], 1); auto w_SumToOne = w.map!(a => a / 78.0); x.wmean.shouldApprox == 29.25 / 12; x.wmean(w).shouldApprox == 203.0 / 78; x.wmean!true(w_SumToOne).shouldApprox == 203.0 / 78;
Examples:Column mean of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, iota, map, universal; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto w = iota([2], 1).universal; auto result = [4.0 / 3, 16.0 / 3, 11.5 / 3, 4.0 / 3, 6.5 / 3, 4.25 / 3]; // Use byDim or alongDim with map to compute mean of row/column. assert(x.byDim!1.map!(a => a.wmean(w)).all!approxEqual(result)); assert(x.alongDim!0.map!(a => a.wmean(w)).all!approxEqual(result)); // FIXME // Without using map, computes the mean of the whole slice // assert(x.byDim!1.wmean(w) == x.sliced.wmean); // assert(x.alongDim!0.wmean(w) == x.sliced.wmean);
Examples:Can also set algorithm or output typeimport mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat, universal; import mir.test: shouldApprox; //Set sum algorithm (also for weights) or output type auto a = [1, 1e100, 1, -1e100].sliced; auto x = a * 10_000; auto w1 = [1, 1, 1, 1].sliced; auto w2 = [0.25, 0.25, 0.25, 0.25].sliced; x.wmean!"kbn"(w1).shouldApprox == 20_000 / 4; x.wmean!(true, "kbn")(w2).shouldApprox == 20_000 / 4; x.wmean!("kbn", true)(w2).shouldApprox == 20_000 / 4; x.wmean!("kbn", true, "pairwise")(w2).shouldApprox == 20_000 / 4; x.wmean!(true, "kbn", "pairwise")(w2).shouldApprox == 20_000 / 4; x.wmean!"kb2"(w1).shouldApprox == 20_000 / 4; x.wmean!"precise"(w1).shouldApprox == 20_000 / 4; x.wmean!(double, "precise")(w1).shouldApprox == 20_000.0 / 4; auto y = uint.max.repeat(3); y.wmean!ulong([1, 1, 1].sliced.universal).shouldApprox == 12884901885 / 3;
Examples:For integral slices, can pass output type as template parameter to ensure output type is correct.import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.test: shouldApprox; auto x = [0, 1, 1, 2, 4, 4, 2, 7, 5, 1, 2, 0].sliced; auto w = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12].sliced; auto y = x.wmean(w); y.shouldApprox(1.0e-10) == 204.0 / 78; static assert(is(typeof(y) == double)); x.wmean!float(w).shouldApprox(1.0e-10) == 204f / 78;
Examples:Mean works for complex numbers and other user-defined types (provided they can be converted to a floating point or complex type)import mir.complex; import mir.ndslice.slice: sliced; import mir.test: should; alias C = Complex!double; auto x = [C(1.0, 2), C(2, 3), C(3, 4), C(4, 5)].sliced; auto w = [1, 2, 3, 4].sliced; x.wmean(w).should == C(3, 4);
Examples:Compute weighted mean tensors along specified dimention of tensorsimport mir.ndslice.fuse: fuse; import mir.ndslice.slice: sliced; import mir.ndslice.topology: alongDim, as, iota, map, universal; /++ [[0,1,2], [3,4,5]] +/ auto x = [ [0, 1, 2], [3, 4, 5] ].fuse.as!double; auto w = [ [1, 2, 3], [4, 5, 6] ].fuse; auto w1 = [1, 2].sliced.universal; auto w2 = [1, 2, 3].sliced; assert(x.wmean(w) == (70.0 / 21)); auto m0 = [(0.0 + 6.0) / 3, (1.0 + 8.0) / 3, (2.0 + 10.0) / 3]; assert(x.alongDim!0.map!(a => a.wmean(w1)) == m0); assert(x.alongDim!(-2).map!(a => a.wmean(w1)) == m0); auto m1 = [(0.0 + 2.0 + 6.0) / 6, (3.0 + 8.0 + 15.0) / 6]; assert(x.alongDim!1.map!(a => a.wmean(w2)) == m1); assert(x.alongDim!(-1).map!(a => a.wmean(w2)) == m1); assert(iota(2, 3, 4, 5).as!double.alongDim!0.map!wmean == iota([3, 4, 5], 3 * 4 * 5 / 2));
- meanType!F
wmean
(SliceA, SliceB)(SliceAs
, SliceBw
)
if (isConvertibleToSlice!SliceA && isConvertibleToSlice!SliceB); - Parameters:
SliceA s
slice-like SliceB w
weights - meanType!F
wmean
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable
- struct
WSummator
(T, Summation summation, U = T); - Output range for wsum.Examples:
import mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.test: should; WSummator!(double, Summation.pairwise) x; x.put([0.0, 1, 2, 3, 4].sliced, [1, 2, 3, 4, 5].sliced); x.wsum.should == 40; x.put(5, 6); x.wsum.should == 70;
Examples:Assume no weights, like Summatorimport mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.test: should; WSummator!(double, Summation.pairwise) x; x.put([0.0, 1, 2, 3, 4].sliced); x.wsum.should == 10; x.put(5); x.wsum.should == 15;
- Summator!(T, summation)
wsummator
; - const pure nothrow @nogc @property @safe F
wsum
(F = T)(); - void
put
(Slice1, Slice2)(Slice1s
, Slice2w
)
if (isSlice!Slice1 && isSlice!Slice2); - void
put
(SliceLike1, SliceLike2)(SliceLike1s
, SliceLike2w
)
if (isConvertibleToSlice!SliceLike1 && !isSlice!SliceLike1 && isConvertibleToSlice!SliceLike2 && !isSlice!SliceLike2); - void
put
(Range)(Ranger
)
if (isIterable!Range); - void
put
(RangeA, RangeB)(RangeAr
, RangeBw
)
if (isInputRange!RangeA && !isConvertibleToSlice!RangeA && isInputRange!RangeB && !isConvertibleToSlice!RangeB); - void
put
()(Tx
, Uw
); - void
put
()(Tx
); - void
put
(F = T, G = U)(WSummator!(F, summation, G)wm
);
- template
wsum
(F, Summation summation = Summation.appropriate, G = F)
templatewsum
(Summation summation = Summation.appropriate)
templatewsum
(F, string summation, G = F)
templatewsum
(string summation) - Computes the weighted sum of the input.Parameters:
F controls type of output summation algorithm for calculating sums (default: Summation.appropriate) G controls the type of weights Returns:The weighted sum of all the elements in the inputSee Also:Examples:import mir.complex; import mir.math.common: approxEqual; import mir.ndslice.slice: sliced; import mir.test: should; alias C = Complex!double; wsum([1, 2, 3], [1, 2, 3]).should == (1 + 4 + 9); wsum([C(1, 3), C(2), C(3)], [1, 2, 3]).should == C((1 + 4 + 9), 3); wsum!float([0, 1, 2, 3, 4, 5].sliced(3, 2), [1, 2, 3, 4, 5, 6].sliced(3, 2)).should == 70; static assert(is(typeof(wmean!float([1, 2, 3], [1, 2, 3])) == float));
Examples:If weights are not provided, then behaves like sumimport mir.complex; import mir.ndslice.slice: sliced; import mir.test: should; alias C = Complex!double; wsum([1.0, 2, 3]).should == 6; wsum([C(1, 3), C(2), C(3)]).should == C(6, 3); wsum!float([0, 1, 2, 3, 4, 5].sliced(3, 2)).should == 15; static assert(is(typeof(wsum!float([1, 2, 3])) == float));
Examples:Weighted sum of vectorimport mir.ndslice.slice: sliced; import mir.ndslice.topology: iota, map; import mir.test: should; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0].sliced; auto w = iota([12], 1); x.wsum.should == 29.25; x.wsum(w).should == 203;
Examples:Weighted sum of matriximport mir.ndslice.fuse: fuse; import mir.ndslice.topology: iota; import mir.test: should; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto w = iota([2, 6], 1); x.wsum.should == 29.25; x.wsum(w).should == 203;
Examples:Column sum of matriximport mir.algorithm.iteration: all; import mir.math.common: approxEqual; import mir.ndslice.fuse: fuse; import mir.ndslice.topology: alongDim, byDim, iota, map, universal; auto x = [ [0.0, 1.0, 1.5, 2.0, 3.5, 4.25], [2.0, 7.5, 5.0, 1.0, 1.5, 0.0] ].fuse; auto w = iota([2], 1).universal; auto result = [4, 16, 11.5, 4, 6.5, 4.25]; // Use byDim or alongDim with map to compute sum of row/column. assert(x.byDim!1.map!(a => a.wsum(w)).all!approxEqual(result)); assert(x.alongDim!0.map!(a => a.wsum(w)).all!approxEqual(result)); // FIXME // Without using map, computes the sum of the whole slice // assert(x.byDim!1.wsum(w) == x.sliced.wsum); // assert(x.alongDim!0.wsum(w) == x.sliced.wsum);
Examples:Can also set algorithm or output typeimport mir.ndslice.slice: sliced; import mir.ndslice.topology: repeat, universal; import mir.test: should; //Set sum algorithm (also for weights) or output type auto a = [1, 1e100, 1, -1e100].sliced; auto x = a * 10_000; auto w1 = [1, 1, 1, 1].sliced; auto w2 = [0.25, 0.25, 0.25, 0.25].sliced; x.wsum!"kbn"(w1).should == 20_000; x.wsum!"kbn"(w2).should == 20_000 / 4; x.wsum!"kb2"(w1).should == 20_000; x.wsum!"precise"(w1).should == 20_000; x.wsum!(double, "precise")(w1).should == 20_000; auto y = uint.max.repeat(3); y.wsum!ulong([1, 1, 1].sliced.universal).should == 12884901885;
Examples:wsum works for complex numbers and other user-defined typesimport mir.complex; import mir.ndslice.slice: sliced; import mir.test: should; alias C = Complex!double; auto x = [C(1.0, 2), C(2, 3), C(3, 4), C(4, 5)].sliced; auto w = [1, 2, 3, 4].sliced; x.wsum(w).should == C(30, 40);
Examples:Compute weighted sum tensors along specified dimention of tensorsimport mir.ndslice.fuse: fuse; import mir.ndslice.slice: sliced; import mir.ndslice.topology: alongDim, as, iota, map, universal; /++ [[0,1,2], [3,4,5]] +/ auto x = [ [0, 1, 2], [3, 4, 5] ].fuse.as!double; auto w = [ [1, 2, 3], [4, 5, 6] ].fuse; auto w1 = [1, 2].sliced.universal; auto w2 = [1, 2, 3].sliced; assert(x.wsum(w) == 70); auto m0 = [(0 + 6), (1 + 8), (2 + 10)]; assert(x.alongDim!0.map!(a => a.wsum(w1)) == m0); assert(x.alongDim!(-2).map!(a => a.wsum(w1)) == m0); auto m1 = [(0 + 2 + 6), (3 + 8 + 15)]; assert(x.alongDim!1.map!(a => a.wsum(w2)) == m1); assert(x.alongDim!(-1).map!(a => a.wsum(w2)) == m1);
- sumType!F
wsum
(SliceA, SliceB)(SliceAs
, SliceBw
)
if (isConvertibleToSlice!SliceA && isConvertibleToSlice!SliceB); - Parameters:
SliceA s
slice-like SliceB w
weights - sumType!F
wsum
(Range)(Ranger
)
if (isIterable!Range); - Parameters:
Range r
range, must be finite iterable
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:05 2023