Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.inference
This module contains statistical inference algorithms.
License:
Authors:
Ilia Ki, John Michael Hall
- template
dAgostinoPearsonTest
(KurtosisAlgo kurtosisAlgo = KurtosisAlgo.online, Summation summation = Summation.appropriate)
templatedAgostinoPearsonTest
(string kurtosisAlgo, string summation = "appropriate") - Tests that a sample comes from a normal distribution.Parameters:
kurtosisAlgo algorithm for calculating skewness and kurtosis (default: KurtosisAlgo.online) summation algorithm for calculating sums (default: Summation.appropriate) Returns:The kurtosis of the input, must be floating pointReferences D’Agostino, R. B. (1971), “An omnibus test of normality for moderate and large sample size”, Biometrika, 58, 341-348; D’Agostino, R. and Pearson, E. S. (1973), “Tests for departure from normality”, Biometrika, 60, 613-622
Examples:import mir.math.common: approxEqual, pow; import mir.math.sum: Summation; import mir.ndslice.slice: sliced; import mir.test; auto x = [0.0, 1.0, 1.5, 2.0, 3.5, 4.25, 2.0, 7.5, 5.0, 1.0, 1.5, 0.0]; double p; x.dAgostinoPearsonTest(p).shouldApprox == 4.151936053369771; p.shouldApprox == 0.12543494432988342; p = p.nan; x.dAgostinoPearsonTest!"threePass"(p).shouldApprox == 4.151936053369771; p.shouldApprox == 0.12543494432988342;
- F
dAgostinoPearsonTest
(Range, F)(Ranger
, out Fp
)
if (isFloatingPoint!F && isIterable!Range); - Parameters:
Range r
range, must be finite iterable F p
null hypothesis probability
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:05 2023