Report a bug
If you spot a problem with this page, click here to create a GitHub issue.
Improve this page
Quickly fork, edit online, and submit a pull request for this page.
Requires a signed-in GitHub account. This works well for small changes.
If you'd like to make larger changes you may want to consider using
a local clone.
mir.stat.distribution.exponential
This module contains algorithms for the Exponential Distribution.
License:
Authors:
John Michael Hall
- pure nothrow @nogc @safe T
exponentialPDF
(T)(const Tx
, const Tlambda
)
if (isFloatingPoint!T); - Computes the exponential probability density function (PDF).Parameters:
T x
value to evaluate PDF T lambda
number of events in an interval See Also:Examples:import mir.math.common: approxEqual; assert(0.5.exponentialPDF(2.0).approxEqual(0.7357589)); assert(0.75.exponentialPDF(2.0).approxEqual(0.4462603)); assert(0.25.exponentialPDF(0.5).approxEqual(0.4412485));
- pure nothrow @nogc @safe T
exponentialCDF
(T)(const Tx
, const Tlambda
)
if (isFloatingPoint!T); - Computes the exponential cumulative distribution function (CDF).Parameters:
T x
value to evaluate CDF T lambda
number of events in an interval See Also:Examples:import mir.math.common: approxEqual; assert(0.5.exponentialCDF(2.0).approxEqual(0.6321206)); assert(0.75.exponentialCDF(2.0).approxEqual(0.7768698)); assert(0.25.exponentialCDF(0.5).approxEqual(0.1175031));
- pure nothrow @nogc @safe T
exponentialCCDF
(T)(const Tx
, const Tlambda
)
if (isFloatingPoint!T); - Computes the exponential complementary cumulative distribution function (CCDF).Parameters:
T x
value to evaluate CCDF T lambda
number of events in an interval See Also:Examples:import mir.math.common: approxEqual; assert(0.5.exponentialCCDF(2.0).approxEqual(1 - exponentialCDF(0.5, 2.0))); assert(0.75.exponentialCCDF(2.0).approxEqual(1 - exponentialCDF(0.75, 2.0))); assert(0.25.exponentialCCDF(0.5).approxEqual(1 - exponentialCDF(0.25, 0.5)));
- pure nothrow @nogc @safe T
exponentialInvCDF
(T)(const Tp
, const Tlambda
)
if (isFloatingPoint!T); - Computes the exponential inverse cumulative distribution function (InvCDF).Parameters:
T p
value to evaluate InvCDF T lambda
number of events in an interval See Also:Examples:import mir.math.common: approxEqual; assert(0.6321206.exponentialInvCDF(2.0).approxEqual(0.5)); assert(0.7768698.exponentialInvCDF(2.0).approxEqual(0.75)); assert(0.1175031.exponentialInvCDF(0.5).approxEqual(0.25));
- pure nothrow @nogc @safe T
exponentialLPDF
(T)(const Tx
, const Tlambda
)
if (isFloatingPoint!T); - Computes the exponential log probability density function (LPDF).Parameters:
T x
value to evaluate LPDF T lambda
number of events in an interval See Also:Examples:import mir.math.common: approxEqual, log; assert(0.5.exponentialLPDF(2.0).approxEqual(log(exponentialPDF(0.5, 2.0)))); assert(0.75.exponentialLPDF(2.0).approxEqual(log(exponentialPDF(0.75, 2.0)))); assert(0.25.exponentialLPDF(0.5).approxEqual(log(exponentialPDF(0.25, 0.5))));
Copyright © 2016-2023 by Ilya Yaroshenko | Page generated by
Ddoc on Wed Oct 18 12:23:06 2023